Alternative fuel: Hydrogen Answer Key

Instructions: Read this webpage (<u>https://afdc.energy.gov/fuels/hydrogen_benefits.html</u>) and then answer the questions below.

Hydrogen Benefits and Considerations:

Why is hydrogen a good choice for alternative fuel?

Hydrogen can be made with near-zero greenhouse gas emissions.

Energy security:

How does hydrogen increase our country's energy security?

Hydrogen can be produced in the U.S.

Public Health and Environment:

What are the environmental and health benefits of using hydrogen as an energy source?

Vehicles powered by hydrogen do not produce any harmful substances, only water and warm air.

Fuel Storage:

What makes storing hydrogen a challenge?

Hydrogen's energy content by volume is low so high pressure and low temperatures are required to store it.

Use the GREET excel database to complete the chart below:

- 1. Open this link: <u>https://greet.es.anl.gov/greet_1_series</u>
- Click the link underneath "GREET 1 Series (Fuel-Cycle Model) or this link GREET_2020rev1.zip
- 3. Open the GREET folder
- 4. Select "GREET1-2020"

Date:

Class:

COPYRIGHT NOTIFICATION		Results			
GREETI MODEL		Ethanol	Natural Gas	5 MeOH & FTD	RNG
Email contact: greet@anl.gov	Electric	Hydrogen	BioOil	Pyrolysis & IDL	Integrated Biorefinery
2 COPYRIGHT 2017 UChicago Argonne, LLC ALL RIGHTS RESERVED	Fuel Production	Emission Time S	Factors	Agricultural and Min Emission Factors	ing Machineries Time Series
HIS SOFTWARE DISCLOSES MATERIAL PROTECTED UNDER COPYRIGHT LAW, AND FURTHER DISSEMMATION IS PROHIBITED WITHOUT PRIOR WRITTEN CONSENT OF THE PATENT COUNSEL OF ARGONNE NATIONAL LABORATORY, EXCEPT AS NOTED IN HE "LICENSING TERMS AND CONDITIONS" NOTED BELOW.	Water Consumption Factors	Passenger Car Time Series		Light Duty Truck 1 Time Series	Light Duty 1 2 Time Se
RGONNE NATIONAL LABORATORY, WITH A FACILITY IN THE STATE OF ILLINOIS, IS OWNED BY THE UNITED STATES	Fuel Specifications	Vehi	cles	Ag Inputs	
GOVERNMENT LICENSE					
IOTICE: This data was produced by UChicago Argonne, LLC under Contract No. DE-AC02-06CH11357 with the Department of inergy. For 5 years from August 2017, the Government is granted for stelf and others acting on its behalf a nonexclusive, paid- up, irrevocable worldwide license in this data to reproduce, prepare derivative works, and perform publicly and display publicly, yo or on behalf of the Government. There is provision for the possible extension of the term of this license. Subsequent to that evend or any extension granted, the Government is granted for itself and others acting on its behalf a nonexclusive, paid- up, revocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so. The specific term of the license can be identified by inquiry made to Chicago Argonne, LLC or DOE.					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. DE-AC02-06CH11357 with the Department of Energy. For 5 years from August 2017, the Government is granted for stelf and others acting on its behalf a nonexclusive, paid- up, irrevocable worldwide license in this data to reproduce, prepare derivative works, and perform publicly and display publicly, yo or on behalf of the Government. There is provision for the possible extension of the term of this license. Subsequent to that period or any extension granted, the Government is granted for itself and others acting on its behalf a nonexclusive, paid- prevocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display public), and to permit others to do so. The specific term of the license can be identified by inquiry made to JChicago Argonne, LLC or DOE. END-USER LICENSING TERMS AND CONDITIONS					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. DE-AC02-06CH11357 with the Department of Energy. For Syears from August 2017, the Government is granted for itself and others acting on its behalf a nonexclusive, paid- up, irrevocable worldwide license in this data to reproduce, prepare derivative works, and perform publicly and display publicly, and use of the Government is granted for itself and others acting on its behalf a nonexclusive, paid- priod or any extension granted, the Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, rrevocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so. The specific term of the license can be identified by inquiry made to UChicago Argonne, LLC or DOE.					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. DE-AC02-06CH11357 with the Department of Energy. For Syvers from August 2017, the Government is granted for shelf and others acting on its behalf a nonexclusive, paid- up, irrevocable worldwide license in this data to reproduce, prepare derivative works, and perform publicly and display publicly, by or on behalf of the Government. There is provision for the possible extension of the term of this license. Subsequent to that period or any extension granted, the Government is granted for itself and others acting on its behalf a nonexclusive, paid- up, irrevocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, paid-up, revocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, paid-up, revocable worldwide license in this data to reproduce, prepare derivative works, distribute copies to the public, paid-up, mublicly and display publicly, and display publicly, paid-up, paid-up publicly and display publicly, and display publicly, and display publicly and display publicly. END-USER LICENSING TERMS AND CONDITIONS					

- 5. To use the GREET database, you have to click on the "Hydrogen" tab at the bottom of the screen. The red arrow above is pointing to it.
- There is a lot of information on this database. Scroll all the way down to 4) Summary of Energy Consumption, Water Consumption, and Emissions. The data you are looking for is listed in table 4.1. This table tells you the energy consumption, water consumption, and total emissions for what are the units? Each gallon of ethanol? (it says Btu or Gallons or Grams per mmBtu of fuel)
- 7. Because we are interested in reducing carbon emissions and climate change, you will be looking at the values for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). There are other variables in this chart, but we will focus just on these three. There is a red box around them in the table below.

4.1) Energy use, water Consumption, and Total Emi	ssions									
			Control Diant	e. Color			Control Diantos F	leatrohusia		
	Control Blants	NC or FC	Energy to Co	s: solar	Control Plant	o, Nuclear te	(HTCD) to Co	lectrolysis	Control Blan	ter Cor
	to Concourd	hydrogen	Lifergy to Ga	iscous	Cancound	S. Nuclear to	(ITGK) to Ga	iscous	Canada	his. Coa
	Feedetock	Fuel	Feedetock	Fuel	Feedetock	Fuel	Feedetock	Fuel	Feedetock	iyuroge
Loss factor	Tecustock	0.827	TEEdatock	1 000	TEEdatock	1 000	TEEUSIOCK	1 000	Teedatock	
Total energy	72 763	517 193	1 399 990	278 055	1 031 292	278.055	1 280 102	278.055	20.110	00
Foceil fuele	72 240	459 167	1,000,000	221 140	26 245	221 140	32,806	221 140	19 244	84
Coal	910	100 915	ő	100 566	8 761	100 566	10 951	100 566	2 138	71
Natural cae	67 403	352,823	·	116 652	14 933	116 652	18,666	116 652	3 240	12
Petroleum	3 927	5 429	ő	3 922	2 551	3 922	3 189	3 922	13,866	1
Water consumption	3,02/	48 186	25 500	25 010	169,005	25 010	202 243	25 010	3,801	10
VOC	7 001	6 485	0.000	20.015	0.814	20.015	1 018	20.015	7 427	10
00	15.027	11 138	0.000	6.897	3 355	6.897	4 194	6.897	2.676	1
NOT	10.027	21.069	0.000	12 641	4 430	12 641	5 5 2 7	12 641	12.070	2
PM10	0.430	4 521	0.000	2.060	0.278	2.060	0.348	2.060	8 745	-
DM2.5	0.386	3 317	0.000	0.917	0.167	0.017	0.209	0.017	1.407	
SO ₂	11 106	31.870	0.000	27 577	2.461	27 577	3.077	27 577	6.851	
BC	0.130	0.353	0.000	0.081	0.038	0.081	0.048	0.081	0.031	- T
00	0.135	0.819	0.000	0.001	0.042	0.001	0.053	0.001	0.003	
СНИ	103 358	68 951	0.000	28.884	4 178	28.884	5 223	28.884	147 503	44
N2O	0.234	0.647	0.000	0 270	0.032	0 270	0.040	0 270	0.029	···.
002	4 700	91.052	0.000	17 346	1 962	17 346	2 452	17 346	1 504	16
CO2 (w/ C in V/OC & CO)	4,745	91,002	ő	17 363	1 970	17 363	2,462	17 363	1,504	16
CHCe	7 908	93 330	ő	18 301	2 103	18 301	2,402	18 301	5 964	16
4 2) IIrban Emissions: Grams per mmBtu of H2 Thro	ughput at Each	Stane	0	10,501	2,103	10,501	2,023	10,001	3,304	
Loss factor	agripatateat	Juge								
VOC	0.155	0.654	0 000	0 156	0.028	0.156	0.035	0 156	0.041	
0	0.541	1 115	0.000	1 289	0.128	1 289	0.160	1 289	0.041	
NOx	0.675	3 242	0.000	2 789	0.120	2 789	0.330	2 789	0.079	
PM10	0.009	0.884	0.000	0.307	0.028	0.307	0.035	0.307	0.011	
PM2.5	0.008	0 796	0.000	0 230	0.021	0.230	0.026	0 230	0.009	
SOX	0.198	9.636	0.000	9.552	0.834	9.552	1 043	9.552	0.153	
BC	0.002	0.072	0.000	0.016	0.001	0.016	0.002	0.016	0.001	
00	0.002	0.187	0.000	0.042	0.004	0.042	0.005	0.042	0.002	
	0.002	0.107	0.000	0.012	0.001	0.012	0.000	0.012	0.002	
Energy Consumption, Water Consumption, and En	issions from N	laterial Prod	luction for Hydro	ogen Pathy	ways					
					Corn Steen	Diammoniu	1			
	Ammonia	NaOH	Sulfuric Acid	Glucose	Liquor	m Phosph				
Energy: Btu/kg of material throughput, except as no	ted			0.00000	2.4401					
Total energy	39 928 898	30 197 314	564 107	32 348 490	95 132 605	24 190 452				
Overview Inputs Results Petrole	um 🖉 NG 🖉 Me	OH_FTD	EtOH / Electric	Hydrog	en BioOil	Algae RI	NG / Pyrolysis_II	DL / IBR	FI 4 []	

4) Summary of Energy Consumption, Water Consumption, and Emissions: Btu or Gallons or Grams per mmBtu of H2 Throughput at Each Stage 4.1) Energy Use, Water Consumption, and Total Emissions

8. There are many different ways to make hydrogen. Look at the first 4 columns in the data table (for Fuel, not Feedstock) and find the type of hydrogen formation that you think is best in regards to the amount of CO2, N2O, CH4 in the emissions. Record the type of hydrogen formation in the first row and the emissions data in the rows below. If you would like to move through the data table and investigate other ways of making hydrogen, use the arrow that has the red circle around it in the picture above.

Central Plants: Solar to Gaseous Hydrogen Nuclear to Gaseous Hydrogen Electrolysis to Gaseous Hydrogen				
Type of emission	Total amount of emission for LPG			
CH₄	28.9			
N ₂ O	.3			
CO ₂	17,346			

The abbreviations in GREET are defined below. We are focusing on the highlighted gases: VOC = volatile organic compounds CO = carbon monoxide

Date:

 NO_X = nitric oxide

PM10 = particulate matter with a diameter of 10 micrometers or less

PM2.5 = particulate matter with a diameter of 2.3 micrometers or less

 SO_X = sulfur oxides

BC = black carbon (particulate matter/ soot & contributes to climate change) OC = organic carbon (respiratory effects)

CH₄ = methane

N₂O = nitrous oxide

CO₂ = carbon dioxide

9. Fill in the row below for hydrogen.

- 10. When everyone is finished learning about the energy sources, share what you have learned with the group. Each individual should summarize the questions they answered and share the GREET emissions that were calculated. Notes should be taken in the table below so that the information can be shared with your poster group.
- 11. Circle the energy source you will use to heat your building (remember that we are assuming that the technology for this will be in place) and complete the information below the table.

Answers will vary based in student presentations

Energy Source	Information about energy source	GREET values
Ethanol		
Electric		
Biodiesel		
Natural Gas		
Propane		
Hydrogen		

Type of fuel that will be recommended for use in heating your building structure:

The expectation is that they will choose hydrogen, but it does depend on students' presentations.

Evidence and reasoning for this recommendation:

Evidence used would be the low greenhouse gas emissions.

12. Return to the "Energy Source" document and continue to step 2.

