Date:

Class:

Name:

Alternative fuel: Hydrogen

Instructions: Read this webpage (<u>https://afdc.energy.gov/fuels/hydrogen_benefits.html</u>) and then answer the questions below.

Hydrogen Benefits and Considerations:

Why is hydrogen a good choice for alternative fuel?

Energy security:

How does hydrogen increase our country's energy security?

Public Health and Environment:

What are the environmental and health benefits of using hydrogen as an energy source?

Fuel Storage:

What makes storing hydrogen a challenge?

Use the GREET excel database to complete the chart below:

- 1. Open this link: <u>https://greet.es.anl.gov/greet_1_series</u>
- 2. Click the link underneath "GREET 1 Series (Fuel-Cycle Model) or this link GREET_2020rev1.zip
- 3. Open the GREET folder
- 4. Select "GREET1-2020"

Date:

Class:

	N	Inputs	Results			
GREET® SOFTWARE GREET1 MODEL		Petroleum	Ethanol	Natural Gas	s MeOH & FTD	RNG
Email contact: greet@anl.g		Electric	Hydrogen	BioOil	Pyrolysis & IDL	Integrated Biorefinery
© COPYRIGHT 2017 UChicago Argonne, LLC THIS SOFTWARE DISCLOSES MATERIAL PROTECTED UNDER COPYRISHT LAW A	ALL RIGHTS RESERVED			Factors eries	Agricultural and Mining Machineries Emission Factors Time Series	
HIS SOFTWARE DISCLOSES MATERIAL PROTECTED UNDER COPYRIGHT LAW, AND FURTHER DISSEMINATION IS PROHIBIT VITHOUT PRIOR WRITTEN CONSENT OF THE PATENT COUNSEL OF ARGONNE NATIONAL LABORATORY, EXCEPT AS NOTE HE "LICENSING TERMS AND CONDITIONS" NOTED BELOW.		Water Consumption Factors		er Car Time eries	Light Duty Truck 1 Time Series	Light Duty 2 Time Se
ARGONNE NATIONAL LABORATORY, WITH A FACILITY IN THE STATE OF ILLINOIS, IS OWNED BY THE UNITED STATES GOVERNMENT AND OPERATED BY UCHICAGO ARGONNE LL C UNDER PROVISION OF A CONTRACT WITH THE DEPARTMENT		Fuel Specifications	Vehic	iles	Ag Inputs	
GOVERNMENT LICENSE						
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. Energy. For 5 years from August 2017, the Government is granted for itself and oi up, irrevocable worldwide license in this data to reproduce, prepare derivative wo by or on behalf of the Government. There is provision for the possible extension o period or any extension granted, the Government is granted for itself and others a	DE-AC02-06CH11357 with the Department of thers acting on its behalf a nonexclusive, paid- rks, and perform publicly and display publicly, the term of this license. Subsequent to that ting on its behalf a nonexclusive, paid-up,					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. Energy. For 5 years from August 2017, the Government is granted for itself and o up, irrevocable worldwide license in this data to reproduce, prepare derivative wo by or on behalf of the Government. There is provision for the possible extension of	DE-AC02-06CH11357 with the Department of thers acting on its behalf a nonexclusive, paid- rks, and perform publicly and display publicly, the term of this license. Subsequent to that ting on its behalf a nonexclusive, paid-up, distribute copies to the public, perform license can be identified by inquiry made to					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. Energy. For 5 years from August 2017, the Government is granted for itself and of up, irrevocable worldwide license in this data to reproduce, prepare derivative wor by or on behalf of the Government. There is provision for the possible extension of period or any extension granted, the Government is granted for itself and others a irrevocable worldwide license in this data to reproduce, prepare derivative works, publicly and display publicly, and to permit others to do so. The specific term of the UChicago Argonne, LLC or DOE.	DE-AC02-06CH11357 with the Department of thers acting on its behalf a nonexclusive, paid- rks, and perform publicly and display publicly, if the term of this license. Subsequent to that ting on its behalf a nonexclusive, paid-up, distribute copies to the public, perform license can be identified by inquiry made to					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. Energy. For 5 years from August 2017, the Government is granted for fiself and of up, irrevocable worldwide license in this data for reproduce, prepare derivative wo by or on behalf of the Government. There is provision for the possible extension of period or any extension granted, the Government is granted for fiself and others a irrevocable worldwide license in this data to reproduce, prepare derivative works, publicly and display publicly, and to permit others to do so. The specific term of the UChicago Argonne, LLC or DOE.	DE-AC02-06CH11357 with the Department of thers acting on its behalf a nonexclusive, paid- rks, and perform publicly and display publicly, the term of this license. Subsequent to that ting on its behalf a nonexclusive, paid-up, distribute copies to the public, perform license can be identified by inquiry made to					
NOTICE: This data was produced by UChicago Argonne, LLC under Contract No. Energy. For 5 years from August 2017, the Government is granted for itself and or up, irrevocable worldwide license in this data to reproduce, prepare derivative wo by or on behalf of the Government. There is provision for the possible extension or period or any extension granted, the Government is granted for itself and others a irrevocable worldwide license in this data to reproduce, prepare derivative works, publicly and display publicly, and to permit others to do so. The specific term of the UChicago Argonne, LLC or DOE. END-USER LICENSING TERMS AND COND	DE-AC02-06CH11357 with the Department of thers acting on its behalf a nonexclusive, paid- rks, and perform publicly and display publicly, if the term of this license. Subsequent to that sting on its behalf a nonexclusive, paid-up, distribute copies to the public, perform license can be identified by inquiry made to ITIONS					

- 5. To use the GREET database, you have to click on the "Hydrogen" tab at the bottom of the screen. The red arrow above is pointing to it.
- There is a lot of information on this database. Scroll all the way down to 4) Summary of Energy Consumption, Water Consumption, and Emissions. The data you are looking for is listed in table 4.1. This table tells you the energy consumption, water consumption, and total emissions for what are the units? Each gallon of ethanol? (it says Btu or Gallons or Grams per mmBtu of fuel)
- 7. Because we are interested in reducing carbon emissions and climate change, you will be looking at the values for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). There are other variables in this chart, but we will focus just on these three. There is a red box around them in the table below.

4.1) Energy Use, Water Consumption, and Total Emi	ssions									
			Control Direct				Control Diseter D			
	Control Diserts		Central Plant		Control Directo		Central Plants: El		Central Plant	
	Central Plants		Energy to Ga		Central Plants		(HTGR) to Ga			
	to Gaseous I Feedstock	Fuel	Hydroge Feedstock	Fuel	Gaseous I Feedstock	Fuel	Hydroge Feedstock	Fuel	Gaseous H Feedstock	yaroge
Loss factor	reedstock	0.827	reedstock	1.000	reedslock	1.000	reedstock	1.000	reedstock	
	72,763	517,183	1,388,889	278,955	1,031,282	278,955	1,289,102	278,955	20,110	90
Total energy	72,240	459,167	1,300,009	270,955 221,140	26,245	276,955 221,140	32,806	276,955 221,140	19,244	90 84
Fossil fuels	72,240		0							71
Coal	67,403	100,915	·	100,566	8,761	100,566	10,951	100,566	2,138 3.240	
Natural gas		352,823	-	116,652			18,666	116,652		12
Petroleum	3,927	5,429	0	3,922	2,551	3,922	3,189	3,922	13,866	1
Water consumption	3.034	48.186	25.500	25.919	169.005	25.919	202.243	25.919	3.891	10
VOC	7.001	6.485	0.000	2.045	0.814	2.045	1.018	2.045	7.427	
C0	15.027	11.138	0.000	6.897	3.355	6.897	4.194	6.897	2.676	1
NOx	19.936	21.069	0.000	12.641	4.430	12.641	5.537	12.641	12.033	2
PM10	0.430	4.521	0.000	2.060	0.278	2.060	0.348	2.060	8.745	
PM2.5	0.386	3.317	0.000	0.917	0.167	0.917	0.209	0.917	1.407	
SOx	11.106	31.870	0.000	27.577	2.461	27.577	3.077	27.577	6.851	4
BC	0.130	0.353	0.000	0.081	0.038	0.081	0.048	0.081	0.085	
00	0.135	0.819	0.000	0.191	0.042	0.191	0.053	0.191	0.234	
CH4	103.358	68.951	0.000	28.884	4.178	28.884	5.223	28.884	147.503	11
N2O	0.234	0.647	0.000	0.270	0.032	0.270	0.040	0.270	0.029	
C02	4,700	91,052	0	17,346	1,962	17,346	2,452	17,346	1,504	16
CO2 (w/ C in VOC & CO)	4,745	91,090	0	17.363	1,970	17,363	2,462	17,363	1.531	16
GHGs	7,908	93,330	0	18.301	2,103	18,301	2.629	18,301	5,964	16
4.2) Urban Emissions: Grams per mmBtu of H2 Thro	ughput at Each	Stage								
Loss factor										
VOC	0.155	0.654	0.000	0.156	0.028	0.156	0.035	0.156	0.041	
CO	0.541	1.115	0.000	1.289	0.128	1.289	0.160	1.289	0.041	
NOx	0.675	3.242	0.000	2.789	0.264	2.789	0.330	2.789	0.079	
PM10	0.009	0.884	0.000	0.307	0.028	0.307	0.035	0.307	0.011	
PM2.5	0.008	0.796	0.000	0.230	0.021	0.230	0.026	0.230	0.009	
SOx	0.198	9.636	0.000	9.552	0.834	9.552	1.043	9.552	0.153	
BC	0.002	0.072	0.000	0.016	0.001	0.016	0.002	0.016	0.001	
OC OC	0.002	0.187	0.000	0.010	0.004	0.010	0.002	0.042	0.002	
00	0.002	0.107	0.000	0.042	0.004	0.042	0.005	0.042	0.002	
Energy Consumption, Water Consumption, and Emissions from Material Production for Hydrogen Pathways										
					Corn Steep	Diammoniu				
	Ammonia	NaOH	Sulfuric Acid	Glucose		m Phosph			.	
Energy: Btu/kg of material throughput, except as no										
Total enerov	39 928 898	30 197 314	564 107	32 348 490	95 132 605	24 190 452			/	
Overview Inputs Results Petroleu			EtOH / Electric	Hydroc			NG 🖉 Pyrolysis_ID	L	FI 4	

4) Summary of Energy Consumption, Water Consumption, and Emissions: Btu or Gallons or Grams per mmBtu of H2 Throughput at Each Stage 4.1) Energy Use, Water Consumption, and Total Emissions

8. There are many different ways to make hydrogen. Look at the first 4 columns in the data table (for Fuel, not Feedstock) and find the type of hydrogen formation that you think is best in regards to the amount of CO2, N2O, CH4 in the emissions. Record the type of hydrogen formation in the first row and the emissions data in the rows below. If you would like to move through the data table and investigate other ways of making hydrogen, use the arrow that has the red circle around it in the picture above.

Central Plants:	
Type of emission	Total amount of emission for LPG
CH₄	
N ₂ O	
CO ₂	

The abbreviations in GREET are defined below. We are focusing on the highlighted gases:

VOC = volatile organic compounds

CO = carbon monoxide

 NO_X = nitric oxide

Date:

PM10 = particulate matter with a diameter of 10 micrometers or less

PM2.5 = particulate matter with a diameter of 2.3 micrometers or less SO_x = sulfur oxides

BC = black carbon (particulate matter/ soot & contributes to climate change)

OC = organic carbon (respiratory effects)

<mark>CH₄ = methane</mark>

N₂O = nitrous oxide

CO₂ = carbon dioxide

- 9. Fill in the row below for hydrogen.
- 10. When everyone is finished learning about the energy sources, share what you have learned with the group. Each individual should summarize the questions they answered and share the GREET emissions that were calculated. Notes should be taken in the table below so that the information can be shared with your poster group.
- 11. Circle the energy source you will use to heat your building (remember that we are assuming that the technology for this will be in place) and complete the information below the table.

Energy Source	Information about energy source	GREET values
Ethanol		
Electric		
Biodiesel		
Natural Gas		
Propane		
Hydrogen		

Type of fuel that will be recommended for use in heating your building structure:

Evidence and reasoning for this recommendation:

12. Return to the "Energy Source" document and continue to step 2.

