Name:
Class Period:
Date:

Bernoulli's Equation - Energy Conservation

Needed Supplies: Empty 2-liter plastic bottle, scissors, ruler, dye, water

Theoretical Background

- Bernoulli's Equation
- An increase in the speed of a fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential energy.
- The left side of the equation represents point 1 , with the right side representing point 2 (before and after)
- $\mathrm{P}_{1}+\frac{1}{2} \mathrm{pv}^{2}{ }_{1}+\mathrm{pgh}_{1}=\mathrm{P}_{2}+{ }^{1} / 2 \mathrm{pv}^{2}{ }_{2}+\mathrm{pgh}_{2}$
- This equation is based on the principle of energy conservation
- Energy is neither created nor destroyed, but rather changes forms
- Bernoulli's equation contains three types of energy:
- Pressure Energy
- Represented by $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{2}}$
- Kinetic Energy
- Represented by ${ }_{1 / 2} \rho v^{2}{ }_{1}$ and $1 / 2 \rho v^{2}{ }_{2}$
- $\boldsymbol{\rho}$ is the density of the fluid
- v is the velocity of the fluid
- Potential Energy
- Represented by $\boldsymbol{\rho g} \boldsymbol{h}_{1}$ and $\boldsymbol{\rho g} \boldsymbol{h}_{\mathbf{2}}$
- $\boldsymbol{\rho}$ is the density of the fluid
- \mathbf{g} is the acceleration due to gravity
- \mathbf{h} is the height of the fluid from the designated zero point

Experiment

- A 2 Liter soda bottle with a hole will be used for this experiment

- Point 1 - The surface of the water in the bottle
- $\boldsymbol{P 1}$ is zero because of atmospheric pressure
- $\boldsymbol{v 1}$ is assumed to be zero for this experiment
- $h 1$ will be recorded as water level decreases
- Point 2 - The hole at the bottom of the bottle
- P2 is zero because of atmospheric pressure
- $\mathbf{v 2}$ is unknown but will be calculated
- $\boldsymbol{h 2}$ is zero because $h 1$ is measured from point 2
- Solving the equation for v2
- $P_{\neq}+\frac{1}{z} \rho v_{t}+\rho g h_{1}=P_{z}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{z}$
- $v_{2}=\sqrt{2 g h_{1}}$

Procedure

1. Obtain a 2 liter soda bottle and create a small hole on the bottom side
2. Cut off the top of the bottle and insert a ruler
3. Fill with water/dye, keeping the hole plugged
4. Let water flow out
5. Measure the height of the fluid ($h 1$) at 10 different points as the water flows out
6. Record results in Data/Calculations section
7. Calculate $\mathbf{v 2}$ for each point

Data/Calculations

ρ	0.036	$\mathrm{lb} / \mathrm{in}^{\wedge} 3$
g	386.4	$\mathrm{in} / \sec ^{\wedge} 2$

Point	1	2	3	4	5	6	7	8	9	10
Height (h1)										
Velocity (v2)										

Discussion

- Describe what happens to the velocity of water flowing out of the bottle as the water level (h1) gets lower.
- What assumption becomes invalid when the hole size is large enough to make the water at point 1 move with a significant velocity?
- What would happen to $\boldsymbol{v 2}$ if the top of the bottle is sealed and hooked up to an air compressor?

