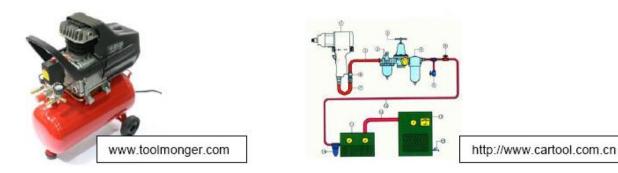
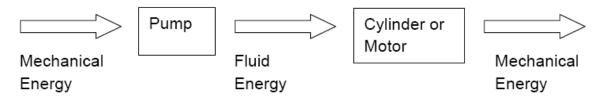
Name:


Class Period:

Date:


Energy Storage

Needed Supplies: Air compressor, valve, cylinder, piping/tubing, weight, pressure gauge, ruler, stopwatch

Background

- Air compressors are used every day to do jobs that would otherwise be difficult to do with ordinary hand tools.
- Air compressors use an air pump to convert mechanical energy to fluid energy, store that energy in a tank, and then expel it through a cylinder or motor, converting it back to mechanical energy.

- Asdf
 - Work
 - Work is defined as force times distance
 - W = FD
 - F in lbs
 - D in inches

- Power
 - Power is defined as work per unit time
 - Power = Work / t
 - Hydraulic power is the product of Pressure and Flow Rate
 - Power = PQ
 - o **P** in psi
 - o **Q** in in³/sec
- Efficiency
 - Efficiency is the ratio of power input to power output
 - e = Output power / Input power

Experiment

- In this experiment you will follow the path of compressed air from a tank to a cylinder attached to a weight
- The air within the air compressor tank is stored energy, and creates power when released at a certain pressure (**P**) and a flow rate (**Q**).
 - Refer to the specifications of the air compressor model that you are using, specifically what flow rate (in CFM, cubic feet per minute) it can deliver at a certain pressure.
- When the air reaches the cylinder, work is done by the cylinder (a force is applied over a distance)
 - Power is produced during the extension of the cylinder as well (Work/time)
- Between the air tank and the cylinder, power is lost through friction in the pipes as well any leaks in the system
 - It is possible to determine how efficient the system is by dividing the
 output power at the cylinder by the input power from the compressor tank

Procedure

- Plumb a basic air circuit with 1 valve and 1 cylinder and connect to an air compressor
- 2. Make sure that air compressor has a pressure gauge.

- 3. Attach an object of known weight to the extended cylinder
- 4. Retract the cylinder and record the following:
 - a. How long it takes to lift the weight
 - b. The pressure reading from the gauge
 - c. The distance that the weight travels

Data

Calculations

Power produced by air compressor:

	<u> </u>
Р	psi
Q	ft^3/min
Q	in^3/sec
Input Power	lb-in/sec

Efficiency:

Input Power	
Output Power	
е	

Power produced by cylinder:

F(weight of object)	lbf
D(distance travelled)	in
W(work)	lb-in
t (time)	sec
Output Power	lb-in/sec

Discussion

- 1. What generally increases with the size of an air compressor tank? (Consult your instructor or online resources if necessary)
- 2. Would decreasing the length of tubing between the tank and cylinder increase or decrease the efficiency of the system? Explain your answer.

3. What does an efficiency of 1 mean? Why is the generally not possible in the real world?