TeachEngineering

Much More Than Pretty Colors

Subscribe to our newsletter at TeachEngineering.org to stay up-to-date on everything TE!

POWERADE 🤣 @POWERADE

POWERRDE

What do you get when you compile a list of the best #BluePowerade tweets and user content? This. Very. Moment.

...

INGREDIENTS:

WATER, SUGAR, DEXTROSE, CITRIC ACID, NATURAL AND ARTIFICIAL FLAVOR, SALT, SODIUM CITRATE, MONOPOTASSIUM PHOSPHATE, MODIFIED FOOD STARCH, GLYCEROL ESTER OF ROSIN, BLUE 1

Have you ever thought about what makes a good food coloring?

A good food coloring needs to be:

- Soluble in water
- Able to retain their color for a long time

How is that possible?

FD&C blue dye #1

Ionic compounds that dissolve in water are polar.

Food dyes absorb and transmit a certain color

How much?

Absorbance and concentration are related

Engineers use this relationship in quality control laboratories for food and pharmaceutical industries.

Today's Activity

Lab Connection: Measuring the absorbance of solutions with various concentrations of food dye and measure the concentration of a Gatorade sample.

Engineering: To design/construct a spectrophotometer/measuring instrument/analyzers

Teacher Demonstration - Absorbance

Food dyes have molecules that absorb some wavelengths of light and let others pass through.

Absorption is caused by bringing an electron in a molecule, atom, or ion to a higher energy level.

y=mx + b

b= 0= y intercept is zero

y= abc

Absorbance α concentration Absorbance = constant x concentration Absorbance = ab C Where a= absorptivity is constant for the substance b =pathlength which is going to be same for the instrument (cuvette) c = concentration $A = \underline{sbc}$

- Spectroscopy is the study of the interaction of light and matter as a function of wavelength.
- Engineers and scientists use spectroscopy as a tool to analyze the interaction between light and matter.

Unknown Sample - Gatorade

Known Sample - Stock solution with blue food color

What is the unit of concentration of a solution?

Molarity (M)

Write the dilution formula

 $M_1V_1 = M_2V_2$

 $M_1 = 6 \times 10^{-6}$ (for all) $V_2 = 10 \text{ ml} (\text{for all})$ V₁ from the data table Substitute and calculate M₂ $M_1V_1 = M_2V_2$ 6 x 10⁻⁶ x 2 = M₂ x 10 $M_2 = (6 \times 10^{-6} \times 2)/10$

M_1 = 6 x 10⁻⁶ (for all) V2 = 10 ml (for all) V₁ (from the data table) Substitute and calculate M_2

Test tube #	Volume of the stock solution (ml) V1	Volume of water (ml)	Concentration of diluted sample (M) M ₁ V ₁ =M ₂ V ₂
1 Blank	0	10	0
2	2	8	1.2 x 10 -6
3	4	6	2.4 x 10-6
4	6	4	3.6 x 10-6
5	8	2	4.8 x 10 -6

Construct a spectrophotometer with the given popsicle sticks.

Make a sample holder that holds the sample, the detector and light source at an appropriate distance.

Download ColorimeterX on your smartphone

App Store Preview

Colorimeter X 4+ Detailed color information Dmitry Svishchov Designed for iPad

Free · Offers In-App Purchases

Screenshots iPad iPhone

	< History	Sett	
/ Picker	> Send Message to Developer		
🛫 Converter	Main Colorspace		
∋z Mixer	Edit Colorspaces	Camera stab	
() Difference	•	1.5 se	
CSS Standart Colors	White Base Line Select Language		
	Purchases		
	Terms and conditions		
	Privacy policy		
	Rate		
		v11 (

Procedure to measure absorbance:

- 1. Take 10 ml of the blank (distilled water) and wipe the side to make it clean and dry.
- 2. Tap the color identifier on your smartphone and record the red value on your data sheet.
- 3. Repeat steps 1-3 with diluted samples # 2-5.
- 4. Record the data in the data table in the appropriate concentration row.
- 5. Take a picture of your experimental setup and include it in your lab report.
- 6. Measure the absorbance of the unknown sample.

Data Table

Test tube	Stock Solution (6 x 10 ⁻⁶ M)	H ₂ O (ml)	Concentration (M)	R value	Absorbance = -log(I/I ₀)
1	0	10	0.00		
2	2	8			
3	4	6			
4	6	4			
5	8	2			
6	10	0	6 x 10 ⁻⁶		

Plot a graph on Excel.

- Graph the data concentration (x-axis) vs. absorbance (y-axis).
- Provide an appropriate title and label x and y axes.
- Enter the values of concentration and absorbance into two columns.
- Highlight the cells and click on scatter plot.
- Right click on the graph and click on Trend Line.
- Then click on add equation and display equation. You will get an equation in y = mx +c format.
- Select Linear as the Fit Equation → The best -fit linear regression line will be shown on the graph for your five data points.

Additional Pictures of Experimental Set up

