Density and Statistics Practice Sheet Answer Key

A block of wood has a mass of 12 g and a volume of 50 cm³. Calculate the density 1.

Given	object = block mass = 12 g volume = 50 cm ³	Picture and Process Draw picture, count, calculate
Unknowns	density	
Equation(s)	density = mass/volume = 12 g / 50 cm ³	
Solution	0.24 g/cm ³	

2. A block of metal has a mass of 23 g and a volume of 17 cm³. Calculate the density.

Given	object = block, mass = 23 g, vol = 17 cm ³	Picture and Process
Unknowns	density	
Equation(s)	density = mass/volume = 23 g / 17 cm ³	
Solution	1.4 g/cm ³	

3. A cube of plastic has a mass of 17 g and a side length of 3 cm. Calculate the density.

Given	object = cube, mass = 17 g, side length = 3 cm	Picture and Process
Unknowns	volume, density	
Equation(s)	volume = length ³ = (3 cm) ³ = 27 cm ³ density = mass/volume = 17 g / 27 cm ³	
Solution	0.63 g/cm ³	

A cube of glass has a mass of 35 g and a side length of 7 cm. Calculate the density. 4.

Given	object = cube, mass = 35 g, side length = 7 cm	Picture and Process
Unknowns	volume, density	
Equation(s)	volume = length ³ = (7 cm) ³ = 343 cm ³ density = mass/volume = 35 g /343 cm ³	
Solution	0.10 g/cm ³	

Name: ______ Date: _____ Class: _____

5. A rectangular prism has a mass of 80 g and a side lengths of 7 cm, 13 cm and 19 cm. Calculate the density.

Given	object = rectangular prism, mass = 80 g, side lengths = 7 cm, 13 cm, 19 cm	Picture and Process
Unknowns	volume, density	
Equation(s)	vol = l x w x h = 7 cm x 13 cm x 19 cm = 1,729 density = mass/volume = 80 g /1,729 cm ³	cm ³
Solution	0.10 g/cm ³	

6. A right triangular prism has a mass of 103 g, leg lengths of 4 cm and 9 cm, and a length of 17 cm. Calculate the density.

Given	object = right triangular prism, mass = 103 g, leg lengths of 4 cm and 9 cm, and a length of	Picture and Process 17 cm
Unknowns	volume, density	
	vol = length x ½ (base x height) = 17 cm x ½ (4	cm x 9 cm) = 306 cm ³
Equation(s)	density = mass/volume = 103 g /306 cm ³	
Solution	0.337 g/cm ³	

Measurements of 0.43, 0.44, 0.42. 0.42, 0.43, 0.41, 0.41 cm are collected. Calculate the mean, 7. median, mode and standard deviation for this data set.

Given	measurements of 0.43, 0.44, 0.42. 0.42, 0.43, 0.41, 0.41 cm	
Unknowns	mean, median, mode, standard deviation	
Equation(s)	$\begin{aligned} & \textbf{mean} = \frac{\sum x_i}{n} = (0.43 \text{ cm} + 0.44 \text{ cm} + 0.42 \text{ cm} + 0.42 \text{ cm} + 0.43 \text{ cm} + 0.41 \text{ cm} + 0.41 \text{ cm}) / 7 \\ & \textbf{median} = \text{middle number of: } 0.41, 0.41, 0.42, \textbf{0.42}, 0.43, 0.43, 0.44 \\ & \textbf{mode} = \text{number that occurs that most, } 0.41, 0.42, 0.43 \text{ all occur twice, the mean of these is } 0.42 \\ & \textbf{standard deviation} = \sqrt{\left(\frac{\sum (\overline{x} - x_i)}{n}\right)} = \\ & \sqrt{\left(\frac{(0.42 - 0.43)^2 + (0.42 - 0.44)^2 + (0.42 - 0.42)^2 + (0.42 - 0.42)^2 + (0.42 - 0.43)^2 + (0.42 - 0.41)^2 + (0.42 - 0.41)^2)}{7} \right)} = \\ & \sqrt{\frac{0.0001 + 0.0004 + 0 + 0.0001 + 0.0001 + 0.0001)}{7}} = \sqrt{\left(\frac{0.0008}{7}\right)} \end{aligned}$	
Solution	mean ≈ 0.42 cm median = 0.42 cm mode = 0.42 cm standard deviation ≈ 0.01	

Name:	Date: Class:
	Measurements of 0.061, 0.019, 0.021. 0.022, 0.018, 0.018, 0.019 cm are collected. Calculate the mean, median, mode and standard deviation for this data set.
Given	measurements of 0.061, 0.019, 0.021, 0.022, 0.018, 0.018, 0.019 cm
Unknowns	mean, median, mode, standard deviation
Equation(s)	$ \begin{split} & \text{mean} = \frac{\sum x_i}{n} = (0.061 \text{ cm} + 0.019 \text{ cm} + 0.021 \text{ cm} + 0.022 \text{ cm} + 0.018 \text{ cm} + 0.018 \text{ cm} + 0.019 \text{ cm}) / 7 \\ & \text{median} = \text{middle number of: } 0.018, 0.018, 0.019, \underline{0.019}, 0.021, 0.022, 0.061 \\ & \text{mode} = \text{number that occurs that most, } 0.018 \text{ and } 0.019 \text{ all occur twice, the mean of these is } 0.0185, \\ & \text{or} \approx 0.019 \\ & \text{standard deviation} = \sqrt{\left(\frac{\sum (\overline{x} - x_i)}{n}\right)} = \\ & \left(\frac{(0.025 - 0.061)^2 + (0.025 - 0.021)^2 + (0.025 - 0.022)^2 + (0.025 - 0.018)^2 + (0.025 - 0.019)^2 + (0.014 + 0.019)^2 + (0.014 + 0.$
Solution	mean ≈ 0.025 cm median = 0.019 cm mode = 0.019 cm standard deviation ≈ 0.015 cm