Name: $\qquad$ Date: $\qquad$ Class: $\qquad$ Density and Statistics Practice Sheet Answer Key

1. A block of wood has a mass of 12 g and a volume of $50 \mathrm{~cm}^{3}$. Calculate the density

| Given | object $=$ block <br> mass $=12 \mathrm{~g}$ <br> volume $=50 \mathrm{~cm}^{3}$ | Picture and Process |
| :--- | :--- | :--- |
| Unknowns | density |  |
| Equation(s) | density $=$ mass/volume $=12 \mathrm{~g} / 50 \mathrm{~cm}^{3}$ |  |
| Solution | $0.24 \mathrm{~g} / \mathrm{cm}^{3}$ |  |

2. A block of metal has a mass of 23 g and a volume of $17 \mathrm{~cm}^{3}$. Calculate the density.

| Given | object = block, mass $=23 \mathrm{~g}, \mathrm{vol}=17 \mathrm{~cm}^{3}$ | Picture and Process |
| :--- | :--- | :--- |
| Unknowns | density |  |
| Equation(s) | density $=$ mass/volume $=23 \mathrm{~g} / 17 \mathrm{~cm}^{3}$ |  |
| Solution | $1.4 \mathrm{~g} / \mathrm{cm}^{3}$ |  |

3. A cube of plastic has a mass of 17 g and a side length of 3 cm . Calculate the density.

| Given | object $=$ cube, mass $=17 \mathrm{~g}$, side length $=3 \mathrm{~cm}$ | Picture and Process |
| :--- | :--- | :--- |
| Unknowns | volume, density |  |
| Equation(s) | volume $=$ length $^{3}=(3 \mathrm{~cm})^{3}=27 \mathrm{~cm}^{3}$ <br> density $=$ mass $/$ volume $=17 \mathrm{~g} / 27 \mathrm{~cm}^{3}$ |  |
| Solution | $0.63 \mathrm{~g} / \mathrm{cm}^{3}$ |  |

4. A cube of glass has a mass of 35 g and a side length of 7 cm . Calculate the density.

| Given | object $=$ cube, mass $=35 \mathrm{~g}$, side length $=7 \mathrm{~cm}$ | Picture and Process |
| :--- | :--- | :--- |
| Unknowns | volume, density |  |
| Equation(s) | volume $=$ length <br> (ensity $=$ mass $/ 7 \mathrm{~cm})^{3}=343 \mathrm{~cm}^{3}$ <br> delume $=35 \mathrm{~g} / 343 \mathrm{~cm}^{3}$ |  |
| Solution | $0.10 \mathrm{~g} / \mathrm{cm}^{3}$ |  |

Name: $\qquad$ Date: $\qquad$ Class: $\qquad$
5. A rectangular prism has a mass of 80 g and a side lengths of $7 \mathrm{~cm}, 13 \mathrm{~cm}$ and19 cm . Calculate the density.

| Given | object $=$ rectangular prism, mass $=80 \mathrm{~g}$, <br> side lengths $=7 \mathrm{~cm}, 13 \mathrm{~cm}, 19 \mathrm{~cm}$ | Picture and Process |
| :--- | :--- | :--- |
| Unknowns | volume, density |  |
| Equation(s) | vol $=I \times w \times h=7 \mathrm{~cm} \times 13 \mathrm{~cm} \times 19 \mathrm{~cm}=1,729 \mathrm{~cm}^{3}$ <br> density $=$ mass $/$ volume $=80 \mathrm{~g} / 1,729 \mathrm{~cm}^{3}$ |  |
| Solution | $0.10 \mathrm{~g} / \mathrm{cm}^{3}$ |  |

6. A right triangular prism has a mass of 103 g , leg lengths of 4 cm and 9 cm , and a length of 17 cm . Calculate the density.

| Given | object = right triangular prism, mass $=103 \mathrm{~g}$, leg lengths of 4 cm and 9 cm , and a length of | Picture and Process 17 cm$\mathrm{cm} \times 9 \mathrm{~cm})=306 \mathrm{~cm}^{3}$ |
| :---: | :---: | :---: |
| Unknowns | volume, density <br> vol $=$ length $\times 1 / 2($ base $x$ height $)=17 \mathrm{~cm} \mathrm{x} 1 / 2($ |  |
| Equation(s) | density $=$ mass/volume $=103 \mathrm{~g} / 306 \mathrm{~cm}^{3}$ |  |
| Solution | $0.337 \mathrm{~g} / \mathrm{cm}^{3}$ |  |

7. Measurements of $0.43,0.44,0.42 .0 .42,0.43,0.41,0.41 \mathrm{~cm}$ are collected. Calculate the mean, median, mode and standard deviation for this data set.

| Given | measurements of $0.43,0.44,0.42 .0 .42,0.43,0.41,0.41 \mathrm{~cm}$ |
| :---: | :---: |
| Unknowns | mean, median, mode, standard deviation |
| Equation(s) | $\begin{aligned} & \text { mean }=\frac{\sum x_{i}}{n}=(0.43 \mathrm{~cm}+0.44 \mathrm{~cm}+0.42 \mathrm{~cm}+0.42 \mathrm{~cm}+0.43 \mathrm{~cm}+0.41 \mathrm{~cm}+0.41 \mathrm{~cm}) / 7 \\ & \text { median = middle number of: } 0.41,0.41,0.42, \underline{0.42}, 0.43,0.43,0.44 \\ & \text { mode }=\text { number that occurs that most, 0.41, 0.42,0.43 all occur twice, the mean of these is } 0.42 \\ & \text { standard deviation }=\sqrt{ }\left(\frac{\sum\left(\bar{x}-x_{i}\right)}{n}\right)= \\ & \sqrt{ }\left(\frac{\left.(0.42-0.43)^{2}+(0.42-0.44)^{2}+(0.42-0.42)^{2}+(0.42-0.42)^{2}+(0.42-0.43)^{2}+(0.42-0.41)^{2}+(0.42-0.41)^{2}\right)}{7}\right)= \\ & \sqrt{\frac{0.0001+0.0004+0+0+0.0001+0.0001+0.0001)}{7}}=\sqrt{ }\left(\frac{0.0008}{7}\right) \end{aligned}$ |
| Solution | $\begin{aligned} & \text { mean } \approx 0.42 \mathrm{~cm} \\ & \text { median }=0.42 \mathrm{~cm} \\ & \text { mode }=0.42 \mathrm{~cm} \\ & \text { standard deviation } \approx 0.01 \end{aligned}$ |

Name: $\qquad$ Date: $\qquad$ Class: $\qquad$
8. Measurements of $0.061,0.019,0.021 .0 .022,0.018,0.018,0.019 \mathrm{~cm}$ are collected. Calculate the mean, median, mode and standard deviation for this data set.

| Given | measurements of 0.061, 0.019, 0.021, 0.022, 0.018, 0.018, 0.019 cm |
| :---: | :---: |
| Unknowns | mean, median, mode, standard deviation |
| Equation(s) | $\begin{aligned} & \text { mean }=\frac{\sum x_{i}}{n}=(0.061 \mathrm{~cm}+0.019 \mathrm{~cm}+0.021 \mathrm{~cm}+0.022 \mathrm{~cm}+0.018 \mathrm{~cm}+0.018 \mathrm{~cm}+0.019 \mathrm{~cm}) / 7 \\ & \text { median = middle number of: } 0.018,0.018,0.019,0.019,0.021,0.022,0.061 \\ & \text { mode }=\text { number that occurs that most, } 0.018 \text { and } 0.019 \text { all occur twice, the mean of these is } 0.0185, \\ & \qquad \quad \text { or } \approx 0.019 \\ & \text { standard deviation }=\sqrt{\left(\frac{\sum\left(\bar{x}-x_{i}\right)}{n}\right)}= \\ & \sqrt{ }\left(\frac{\left.(0.025-0.061)^{2}+(0.025-0.019)^{2}+(0.025-0.021)^{2}+(0.025-0.022)^{2}+(0.025-0.018)^{2}+(0.025-0.018)^{2}+(0.025-0.019)^{2}\right)}{7}\right) \\ & \left.=\sqrt{\frac{0.001296+0+0.000036+0.000016+0.000009+0.000049+0.000049+0.000036)}{7}}=\sqrt{\left(\frac{0.001491}{7}\right.}\right) \end{aligned}$ |
| Solution | ```mean \(\approx 0.025 \mathrm{~cm}\) median \(=0.019 \mathrm{~cm}\) mode \(=0.019 \mathrm{~cm}\) standard deviation \(\approx 0.015 \mathrm{~cm}\)``` |

