\ddagger

Warm-Up

List as many items that contain the name of an element.

For example: unleaded gasoline
lithium-ion battery

As a class, we will take turns listing items to create one large class list.

What did you all come up with?

unleaded gasoline
llithium-ion battery

Agenda/Learning Objectives

- How do you sort data?
- Can you show information based on how data is organized?
- How is the Periodic Table sorted?

Let's Talk Grids:

This is a Carroll diagram.
"A Carroll diagram is a way to sort data, such as a group of objects, shapes or numbers, based on given properties or traits in a yes/no fashion"
(Thanks Google!)

Does it make sense why the 2 in this table is all by itself?

A Carroll Diagram of numbers.
"Carroll" as in the author of Alice in
Wonderland.

Let's Practice Grids:

Each person needs a worksheet.

Each group needs a large whiteboard and marker.

A Carroll Diagram of numbers.
"Carroll" as in the author of Alice in
Wonderland.

Let's Practice Grids:

Large whiteboards at the ready!
For this practice round...

- Copy down the categories
- Fill in each section with items that could go into each section

Let's Practice Grids:

Large whiteboards at the ready!
For this practice round...

- Copy down the categories
- Fill in each section with items that could go into each section

	Numbered Playing Card	Face Card
Red Suit		
Black Suit		

Your Turn!

Large whiteboards at the ready!

- You are now going to receive a set of images. DO NOT LOSE THE PAPER CLIP.
- Create your own Carroll Diagram to sort ALL images. A "misc./other" category is not allowed.
- As you work through the images, complete the front of the worksheet.

What did you all come up with?

The main man responsible for today:

Dmitri Mendeleev, the "Father of the Periodic Table" circa 1869

All he had to work off of was:

- Names of Elements
- Atomic Masses
- Observed properties/reactions

His Inspiration:

Let's see how this works:

What two ways are these cards sorted on screen?

			$\begin{aligned} & 4 \% \\ & \% \\ & \% \end{aligned}$	$\left.\left\lvert\, \begin{array}{cc} 5 & * \\ \vdots & \vdots \\ \% & \% \end{array}\right.\right]$				$\begin{aligned} & 6 \% \\ & \% \% \\ & \% \\ & \hline \end{aligned}$				
						A	$\stackrel{+}{*}$					
					$\geqslant \nabla_{g}^{*}$						8	
			-	-	-							

Periodic Table Basics:

Periodic Table of the Elements

See that bolded staircase? That's what separates metals from nonmetals:

Left of the staircase = metal* Right of the staircase = nonmetal "On" the staircase = metalloid
*1 exception

Reading a Single Square:

Pick any element:

A bit more vocab:

Note how Li, Na, and K all explode in water (Cs and Fr too, by the way) The "period" comes from the fact that characteristics tend to repeat across rows.

So on the Periodic Table, rows are called periods.
Columns are called groups, as that is the "group" of elements that behave similarly.

For Example:

