. TeachEngineering

Ignite STEM learming in K-12

Oh Baby! Contractions and Calculations / Activity Part 3

n a u Subscribe to our newsletter at TeachEngineering.org to stay up-to-date on everything TE! EICRIE IR LL"—'@E Engineering

PIERETY OF COLORADO BOULDER

The Analog-to-Digital Converter

The Arduino has a built-in analog to digital converter capable of storing a 10-bit number.
Therefore, the Arduino can recognize 2'° = 1024 different values ranging from 0-1023.

Digital Value 735

The Delimeter Character

In this activity, we are using serial
communication to transmit data (FSR values)

over Bluetooth. This means the Arduino sends Bl compare texts e
each character as an 8-bit byte using the ASCII then set — to i

character value encoded as a decimal. The et {0

receiving end, the Android device, defaults to
displaying byte values using the assigned ASCII
value. Each force value (message) is separated
by the decimal-encoded ASCII character for a
line feed.

| set EEIED D to || GUED”

' L' @ BluetoothClient1 ~ M DelimiterByte to

ASCII Line Feed

ASCII TABLE

Decimal Hexadecimal Binary Octal Char

0 0 0 0 [NULL]

1 1 1 1 [START OF HEADING]
2 2 10 2 [START OF TEXT]

3 3 11 3 [END OF TEXT]

4 4 100 4 [END OF TRANSMISSION]
5 5 101 5 [ENQUIRY]

6 6 110 6 [ACKNOWLEDGE]

7 7 111 7 [BELL]

8 8 1000 10 [BACKSPACE]

9 9 1001 11 [HORIZONTAL TAB]
10 A 1010 12 [LINE FEED]

11 B 1011 13 [VERTICAL TAB]

12 C 1100 14 [FORM FEED]

13 D 1101 15 [CARRIAGE RETURN]
14 E 1110 16 [SHIFT OUT]

15 F 1111 17 [SHIFT IN]

16 10 10000 20 [DATA LINK ESCAPE]
17 11 10001 21 [DEVICE CONTROL 1]
18 12 10010 22 [DEVICE CONTROL 2]

ASCII table

Buffers and Bytes

Setting the number of bytes to receive = -1 (or any negative number), signifies that
there is no maximum number of bytes to the serial message.

when Timer
dos (<)Nif P BluctoothClient! = Re - - I 0}
then set- global FSRvalue = §iv . =1/l BluetoothClient1 » B3 ==

numberOfByte . | [ED
==l Value Num -~ B VBN 4 global FSRvalue ~

Delimeters, Buffers, and Timing

You will need a delay (1000 milliseconds) in the Arduino code and a clock timer (250
milliseconds) in the MIT App Inventor code.

You want the app timer to be faster than the Arduino delay. If it were the other way

around, then there would be a lag on the app end. The app would not be able to
process the information because data would arrive faster than it can process it. But if
the app is faster than the Arduino delay, then there will never be any bytes in the

uffer.

App Clock Interval (ms) < Arduino Delay (ms)

Timerinterva - -
- < delay(1000);

A Serial Packet or Frame

Each character in a message has start and stop bits to indicate the beginning
and end of the byte along with a parity bit (outside today’s scope) that basically
checks for even/odd errors. We are concerned with the 8-bit byte of message.

. Parity
G | Bt7 | sits | mits | e | w3 | iz | mir | o | Y | G

Let's say that we had two sensor values in a row, separated by the line feed
character. Suppose the sensor values were ADC 57 followed by ADC 864. The
way the serial communication works is to send the character 7 encoded for
ASCII as a decimal, followed by the 5, followed by the line feed character code,
followed by the 4, then 6 then 8, then finally the line feed.

Two Readings and Two Delimeters

Let's look at the ASCII table and discuss the values in the table below.

Decimal Hexadecimal Binary Octal Char
0 0 0 0 [NULL]
ASCII Characters 1 1 1 1 [START OF HEADING]
2 2 10 2 [START OF TEXT]
3 3 11 3 [END OF TEXT]
CharaCt Decimal Binary 4 4 100 4 [END OF TRANSMISSION]
er 5 5 101 5 [ENQUIRY]
6 6 110 6 [ACKNOWLEDGE]
7 7 111 7 [BELL]
7 55 0011 0111 8 8 1000 10 [BACKSPACE]
9 9 1001 11 [HORIZONTAL TAB)
5 53 0011 0101
Decimal Hexadecimal Binary Octal Char
LF 10 0000 1010 48 30 110000 60 ©
49 31 110001 61 1
50 32 110010 62 2
4 52 0011 0100 51 33 110011 63 3
52 34 110100 64 4
53 35 110101 65 5
6 54 0011 0110 54 36 110110 66 6
55 37 110111 67 7
56 38 111000 70 8
8 56 0011 1000 57 39 111001 71 9
LF 10 0000 1010

The Serial Flow

olojololtlol]o oy g0/0]1]1]1/0]0]0
_BUFFER

0/001]1]0[1]1 0y golol/1l0]1]0

 [BuFFER
01001110 0y g 0 0/111]0/1 0]t gg golo]1]1J0]1]1)1

	Slide Number 1
	The Analog-to-Digital Converter
The Arduino has a built-in analog to digital converter capable of storing a 10-bit number. Therefore, the Arduino can recognize 210 = 1024 different values ranging from 0‒1023. �
	The Delimeter Character
In this activity, we are using serial communication to transmit data (FSR values) over Bluetooth. This means the Arduino sends each character as an 8-bit byte using the ASCII character value encoded as a decimal. The receiving end, the Android device, defaults to displaying byte values using the assigned ASCII value. Each force value (message) is separated by the decimal-encoded ASCII character for a line feed.�
	ASCII Line Feed
�
	Buffers and Bytes
Setting the number of bytes to receive = -1 (or any negative number), signifies that there is no maximum number of bytes to the serial message. ��
	Delimeters, Buffers, and Timing
You will need a delay (1000 milliseconds) in the Arduino code and a clock timer (250 milliseconds) in the MIT App Inventor code.��You want the app timer to be faster than the Arduino delay. If it were the other way around, then there would be a lag on the app end. The app would not be able to process the information because data would arrive faster than it can process it. But if the app is faster than the Arduino delay, then there will never be any bytes in the buffer.���
	A Serial Packet or Frame�Each character in a message has start and stop bits to indicate the beginning and end of the byte along with a parity bit (outside today’s scope) that basically checks for even/odd errors. We are concerned with the 8-bit byte of message.����Let's say that we had two sensor values in a row, separated by the line feed character. Suppose the sensor values were ADC 57 followed by ADC 864. The way the serial communication works is to send the character 7 encoded for ASCII as a decimal, followed by the 5, followed by the line feed character code, followed by the 4, then 6 then 8, then finally the line feed.���
	Two Readings and Two Delimeters�Let’s look at the ASCII table and discuss the values in the table below.���
	The Serial Flow����

