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The Analog-to-Digital Converter

The Arduino has a built-in analog to digital converter capable of storing a 10-bit number.
Therefore, the Arduino can recognize 2'° = 1024 different values ranging from 0-1023.
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The Delimeter Character

In this activity, we are using serial
communication to transmit data (FSR values)

over Bluetooth. This means the Arduino sends Bl compare texts e
each character as an 8-bit byte using the ASCII then  set — to i

character value encoded as a decimal. The et {0

receiving end, the Android device, defaults to
displaying byte values using the assigned ASCII
value. Each force value (message) is separated
by the decimal-encoded ASCII character for a
line feed.
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ASCII Line Feed

ASCII TABLE

Decimal Hexadecimal Binary Octal Char

0 0 0 0 [NULL]

1 1 1 1 [START OF HEADING]
2 2 10 2 [START OF TEXT]

3 3 11 3 [END OF TEXT]

4 4 100 4 [END OF TRANSMISSION]
5 5 101 5 [ENQUIRY]

6 6 110 6 [ACKNOWLEDGE]

7 7 111 7 [BELL]

8 8 1000 10 [BACKSPACE]

9 9 1001 11 [HORIZONTAL TAB]
10 A 1010 12 [LINE FEED]

11 B 1011 13 [VERTICAL TAB]

12 C 1100 14 [FORM FEED]

13 D 1101 15 [CARRIAGE RETURN]
14 E 1110 16 [SHIFT OUT]

15 F 1111 17 [SHIFT IN]

16 10 10000 20 [DATA LINK ESCAPE]
17 11 10001 21 [DEVICE CONTROL 1]
18 12 10010 22 [DEVICE CONTROL 2]

ASCII table



Buffers and Bytes

Setting the number of bytes to receive = -1 (or any negative number), signifies that
there is no maximum number of bytes to the serial message.
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Delimeters, Buffers, and Timing

You will need a delay (1000 milliseconds) in the Arduino code and a clock timer (250
milliseconds) in the MIT App Inventor code.

You want the app timer to be faster than the Arduino delay. If it were the other way

around, then there would be a lag on the app end. The app would not be able to
process the information because data would arrive faster than it can process it. But if
the app is faster than the Arduino delay, then there will never be any bytes in the

uffer.

App Clock Interval (ms) < Arduino Delay (ms)

Timerinterva - -
- < delay(1000);




A Serial Packet or Frame

Each character in a message has start and stop bits to indicate the beginning
and end of the byte along with a parity bit (outside today’s scope) that basically
checks for even/odd errors. We are concerned with the 8-bit byte of message.
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Let's say that we had two sensor values in a row, separated by the line feed
character. Suppose the sensor values were ADC 57 followed by ADC 864. The
way the serial communication works is to send the character 7 encoded for
ASCII as a decimal, followed by the 5, followed by the line feed character code,
followed by the 4, then 6 then 8, then finally the line feed.



Two Readings and Two Delimeters

Let's look at the ASCII table and discuss the values in the table below.

Decimal Hexadecimal Binary Octal Char
0 0 0 0 [NULL]
ASCII Characters 1 1 1 1 [START OF HEADING]
2 2 10 2 [START OF TEXT]
3 3 11 3 [END OF TEXT]
CharaCt Decimal Binary 4 4 100 4 [END OF TRANSMISSION]
er 5 5 101 5 [ENQUIRY]
6 6 110 6 [ACKNOWLEDGE]
7 7 111 7 [BELL]
7 55 0011 0111 8 8 1000 10  [BACKSPACE]
9 9 1001 11  [HORIZONTAL TAB)
5 53 0011 0101
Decimal Hexadecimal Binary Octal Char
LF 10 0000 1010 48 30 110000 60 ©
49 31 110001 61 1
50 32 110010 62 2
4 52 0011 0100 51 33 110011 63 3
52 34 110100 64 4
53 35 110101 65 5
6 54 0011 0110 54 36 110110 66 6
55 37 110111 67 7
56 38 111000 70 8
8 56 0011 1000 57 39 111001 71 9
LF 10 0000 1010




The Serial Flow
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