
Oh Baby! Contractions and Calculations / Activity Part 3

The Analog-to-Digital Converter
The Arduino has a built-in analog to digital converter capable of storing a 10-bit number.
Therefore, the Arduino can recognize 210 = 1024 different values ranging from 0‒1023.

1 0 1 1 0 1 1 1 1 1

Digital Value 735

The Delimeter Character
In this activity, we are using serial
communication to transmit data (FSR values)
over Bluetooth. This means the Arduino sends
each character as an 8-bit byte using the ASCII
character value encoded as a decimal. The
receiving end, the Android device, defaults to
displaying byte values using the assigned ASCII
value. Each force value (message) is separated
by the decimal-encoded ASCII character for a
line feed.

ASCII Line Feed

Photos should be a
square like this.

ASCII table

Buffers and Bytes
Setting the number of bytes to receive = -1 (or any negative number), signifies that
there is no maximum number of bytes to the serial message.

Delimeters, Buffers, and Timing
You will need a delay (1000 milliseconds) in the Arduino code and a clock timer (250
milliseconds) in the MIT App Inventor code.

You want the app timer to be faster than the Arduino delay. If it were the other way
around, then there would be a lag on the app end. The app would not be able to
process the information because data would arrive faster than it can process it. But if
the app is faster than the Arduino delay, then there will never be any bytes in the
buffer.

App Clock Interval (ms) < Arduino Delay (ms)

<

A Serial Packet or Frame
Each character in a message has start and stop bits to indicate the beginning
and end of the byte along with a parity bit (outside today’s scope) that basically
checks for even/odd errors. We are concerned with the 8-bit byte of message.

Let's say that we had two sensor values in a row, separated by the line feed
character. Suppose the sensor values were ADC 57 followed by ADC 864. The
way the serial communication works is to send the character 7 encoded for
ASCII as a decimal, followed by the 5, followed by the line feed character code,
followed by the 4, then 6 then 8, then finally the line feed.

Start
Bit Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Parity

Bit
Stop
Bit

Two Readings and Two Delimeters
Let’s look at the ASCII table and discuss the values in the table below.

ASCII Characters

Charact
er Decimal Binary

7 55 0011 0111

5 53 0011 0101

LF 10 0000 1010

4 52 0011 0100

6 54 0011 0110

8 56 0011 1000

LF 10 0000 1010

The Serial Flow

T
R
A
N
S
M
I
T

R
E
C
E
I
V
E

0 0 1 1 0 1 1 10 0 1 1 0 1 0 10 0 0 0 1 0 1 0

0 0 1 1 0 1 0 00 0 1 1 0 1 1 0

0 0 1 1 1 0 0 00 0 0 0 1 0 1 0

B U F F E R

B U F F E R

	Slide Number 1
	The Analog-to-Digital Converter
The Arduino has a built-in analog to digital converter capable of storing a 10-bit number. Therefore, the Arduino can recognize 210 = 1024 different values ranging from 0‒1023. �
	The Delimeter Character
In this activity, we are using serial communication to transmit data (FSR values) over Bluetooth. This means the Arduino sends each character as an 8-bit byte using the ASCII character value encoded as a decimal. The receiving end, the Android device, defaults to displaying byte values using the assigned ASCII value. Each force value (message) is separated by the decimal-encoded ASCII character for a line feed.�
	ASCII Line Feed
�
	Buffers and Bytes
Setting the number of bytes to receive = -1 (or any negative number), signifies that there is no maximum number of bytes to the serial message. ��
	Delimeters, Buffers, and Timing
You will need a delay (1000 milliseconds) in the Arduino code and a clock timer (250 milliseconds) in the MIT App Inventor code.��You want the app timer to be faster than the Arduino delay. If it were the other way around, then there would be a lag on the app end. The app would not be able to process the information because data would arrive faster than it can process it. But if the app is faster than the Arduino delay, then there will never be any bytes in the buffer.���
	A Serial Packet or Frame�Each character in a message has start and stop bits to indicate the beginning and end of the byte along with a parity bit (outside today’s scope) that basically checks for even/odd errors. We are concerned with the 8-bit byte of message.����Let's say that we had two sensor values in a row, separated by the line feed character. Suppose the sensor values were ADC 57 followed by ADC 864. The way the serial communication works is to send the character 7 encoded for ASCII as a decimal, followed by the 5, followed by the line feed character code, followed by the 4, then 6 then 8, then finally the line feed.���
	Two Readings and Two Delimeters�Let’s look at the ASCII table and discuss the values in the table below.���
	The Serial Flow����

