

Name: Date: Class:

Neural Data Processing and Database Creation With Python Activity – Downsampling Code Explanation

Downsampling Code Explanation – For the Teacher

Downsampling is a technique used to reduce the number of data points in a dataset. This is
particularly useful when dealing with large datasets, such as EMG signals, to make them more
manageable and to speed up the analysis. Downsampling reduces the sampling frequency by
selecting fewer data points while maintaining the integrity of the overall pattern or trend. This is
often done by skipping over certain samples in the original dataset.

Why is Downsampling Important?

• Data Reduction: It reduces the data size, making it easier to process and analyze.

• Noise Reduction: Downsampling can help reduce noise by smoothing out small
variations that may not be relevant for the analysis.

• Faster Processing: Smaller datasets require less computational power, which is
beneficial when performing analyses such as machine learning or statistical testing.

How Downsampling Works
When we downsample, we essentially keep data points from the original signal at a reduced
frequency. For example, if we start with a signal sampled at 44,100 Hz (samples per second),
and we downsample it to 8,000 Hz, we keep every fifth data point to match the new frequency.

Downsampling Script Explanation
The following Python script demonstrates how to downsample data using SciPy and NumPy.
The students will be working with this script to apply the downsampling technique to their EMG
data.

Python Script for Downsampling (In the Jupyter Notebook)
import numpy as np
from scipy.io import wavfile
import matplotlib.pyplot as plt
Downsample to 8000Hz
downsampled_data = resample(data, int(len(data) * (8000 /
sample_rate))) # Resample the data to 8000 Hz
duration_downsampled = len(downsampled_data) / 8000 # Calculate the
duration of the downsampled audio
time_axis_downsampled = np.linspace(0, duration_downsampled,
len(downsampled_data)) # Create a time axis for the downsampled data
df_downsampled = pd.DataFrame({'Time (seconds)': time_axis_downsampled,
'Amplitude': downsampled_data}) # Create a DataFrame with downsampled
time and amplitude
df_downsampled.to_csv('/content/drive/MyDrive/Colab
Notebooks/outputFile_downsampled.csv', index=False) # Save the
downsampled DataFrame as a CSV file

Name: Date: Class:

Neural Data Processing and Database Creation With Python Activity – Downsampling Code Explanation

Explanation of the Script:
downsampled_data = resample(data, int(len(data) * (8000 / sample_rate)))
Resample the data to 8000 Hz

• Explanation: This line uses the resample function (likely from scipy.signal or another
library) to downsample the data.

o data: This is the original signal that was loaded (e.g., a muscle signal from the
.wav file).

o sample_rate: The original sampling rate of the data (for example, 44,100 Hz).
o len(data): This returns the number of data points (samples) in the original signal.
o (8000 / sample_rate): This is the ratio of the target sampling rate (8000 Hz) to

the original sampling rate. This ratio determines how many samples should be
kept in the downsampled signal.

o int(len(data) * (8000 / sample_rate)): The total number of samples to keep after
downsampling. This calculates the new length of the signal based on the target
rate of 8000 Hz.

o resample(): This function resamples the original data to the target number of
samples, effectively reducing the frequency.

o Result: The downsampled_data now holds the resampled signal at 8000 Hz.

duration_downsampled = len(downsampled_data) / 8000 # Calculate the
duration of the downsampled audio

• Explanation: This line calculates the duration (in seconds) of the downsampled audio
signal.

o len(downsampled_data): This returns the number of samples in the
downsampled signal.

o 8000: This is the new sampling rate (8000 samples per second).
o len(downsampled_data) / 8000: The duration of the downsampled audio is

calculated by dividing the number of samples in the downsampled signal by the
sampling rate (8000 samples per second).

o Result: The duration_downsampled variable now contains the total time (in
seconds) of the downsampled audio.

time_axis_downsampled = np.linspace(0, duration_downsampled,
len(downsampled_data)) # Create a time axis for the downsampled data

• Explanation: This line generates a time axis for the downsampled data to plot the
signal or to represent the time associated with each data point.

o np.linspace(0, duration_downsampled, len(downsampled_data)): This
generates an array of evenly spaced time values from 0 to
duration_downsampled, with the same number of points as there are in the
downsampled data.

§ 0: The start time of the signal (0 seconds).
§ duration_downsampled: The end time of the signal, calculated in the

previous line.

Name: Date: Class:

Neural Data Processing and Database Creation With Python Activity – Downsampling Code Explanation

§ len(downsampled_data): This ensures the time array has the same
number of elements as the downsampled data, so each data point is
associated with a corresponding time value.

o Result: time_axis_downsampled is an array that represents the time in seconds
for each sample in the downsampled data.

df_downsampled = pd.DataFrame({'Time (seconds)': time_axis_downsampled,
'Amplitude': downsampled_data}) # Create a DataFrame with downsampled
time and amplitude

• Explanation: This line creates a Pandas DataFrame that combines the time and
amplitude of the downsampled signal into a tabular format.

o pd.DataFrame(): This function creates a DataFrame (a table-like structure in
Python) from the provided dictionary.

§ 'Time (seconds)': This is the name of the column that will store the time
values.

§ time_axis_downsampled: The time values (generated in the previous
line).

§ 'Amplitude': This is the name of the column that will store the amplitude
(signal strength) values.

§ downsampled_data: The amplitude values of the downsampled signal.
o Result: df_downsampled is a DataFrame where the first column contains the

time values, and the second column contains the corresponding amplitude
values of the downsampled signal.

df_downsampled.to_csv('/content/drive/MyDrive/Colab
Notebooks/outputFile_downsampled.csv', index=False) # Save the
downsampled DataFrame as a CSV file

• Explanation: This line saves the downsampled data in .csv format to Google Drive (or
another location).

o df_downsampled.to_csv(): This function saves the DataFrame
(df_downsampled) as a .csv file.

§ '/content/drive/MyDrive/Colab
Notebooks/outputFile_downsampled.csv': This is the file path where
the .csv file will be saved. In this case, it is saved to Google Drive within a
folder named Colab Notebooks. Students can modify the path to save the
file to a different location if desired.

§ index=False: This prevents Pandas from saving the index (row numbers)
as a separate column in the .csv file.

o Result: The downsampled data is saved as a .csv file named
outputFile_downsampled.csv that students can open in a program such as Excel
or import into other analysis tools.

Name: Date: Class:

Neural Data Processing and Database Creation With Python Activity – Downsampling Code Explanation

Summary of what happens in the script:
• Downsampling: The original signal is downsampled from its original rate to 8000 Hz.
• Time Axis Creation: A time axis is generated to correspond to the downsampled data.
• Data Storage: A Pandas DataFrame is created, combining the time and amplitude of the

downsampled signal.
• Saving the Data: The DataFrame is saved as a .csv file, making it accessible for further

analysis or visualization.

Patterns in Downsampled Data
• What Students Will See:

o Simplified Signal: The downsampled data will retain the key features of the
signal but with fewer data points.

o Major Trends: Students can identify broad patterns of activity without the
distraction of very fine-grained detail.

• Relation to Muscle Activity and Movement:
o Downsampling highlights overall trends in muscle activity, making it easier to

compare across datasets or detect long-term behaviors (e.g., fatigue over time).
o It may slightly obscure finer details, but the focus remains on significant

movements.

