What Is Engineering?
What Is Design?
Pre-Lesson Quiz

1. What is engineering?

2. List some example design challenges.
Pre-Lesson Quiz Answers

1. **What is engineering?**
 Engineering is using science and mathematics to solve problems that improve the world around us. For instance, engineers design skateboards, traffic lights, power plants, airplanes, computers, phones, roller coasters, spacecraft, games, materials, skyscrapers, chemicals, medicines, replacement body parts, etc.

2. **List some example design challenges.**
 Possible answers are unlimited!
 Examples: designing more energy-efficient cars, bridges to get across rivers, alarm clocks to wake us up, and even software, trips and events!
In our modern world, challenges are everywhere!

How can we waste less? How can we harness solar energy and other renewable energy more effectively? How can we design energy-efficient (green) houses? How can we build smarter and safer cars and trains... better roads and bridges? How do we design better biomedical devices to improve diagnosis and human health? How do we understand the functioning of our brains?

These are big ideas that engineers and scientists work on to help improve the world we live in.

Today we will learn more about engineering and the “design cycle” and then finish with a design challenge for you.
Grand Challenges for Engineers

These are the biggest challenges that face engineers of the future:

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make solar energy economical</td>
<td></td>
</tr>
<tr>
<td>Provide energy from fusion</td>
<td></td>
</tr>
<tr>
<td>Develop carbon sequestration methods</td>
<td></td>
</tr>
<tr>
<td>Manage the nitrogen cycle</td>
<td></td>
</tr>
<tr>
<td>Provide access to clean water</td>
<td></td>
</tr>
<tr>
<td>Restore and improve urban infrastructure</td>
<td></td>
</tr>
<tr>
<td>Advance health informatics</td>
<td></td>
</tr>
<tr>
<td>Engineer better medicines</td>
<td></td>
</tr>
<tr>
<td>Reverse-engineer the brain</td>
<td></td>
</tr>
<tr>
<td>Prevent nuclear terror</td>
<td></td>
</tr>
<tr>
<td>Secure cyberspace</td>
<td></td>
</tr>
<tr>
<td>Enhance virtual reality</td>
<td></td>
</tr>
<tr>
<td>Advance personalized learning</td>
<td></td>
</tr>
<tr>
<td>Engineer the tools of scientific discovery</td>
<td></td>
</tr>
</tbody>
</table>
What Is Engineering?

Engineering is using science and mathematics to solve problems to improve the world around us. In the process, engineers also apply their economic, social and practical knowledge.

Many different fields of engineering exist...

➔ Watch this 5-minute “What Is Engineering?” video:

http://www.youtube.com/watch?v=bipTWWHyasA
What Are Engineering Disciplines?

Let’s go through the different disciplines of engineering using a website for K-12 developed by the American Society for Engineering Education http://www.egfi-k12.org/#

- Click on a flashcard for an engineering discipline you want to explore, and it provides you with details.
- The website also has many fascinating videos explaining engineering.

The next three slides provide more details about the various disciplines.
Example Engineering Disciplines

AEROSPACE ENGINEERING
The intellectual descendants of the Wright brothers, aerospace engineers have created some of the world’s most daring flying machines. They design and develop military fighter jets, commercial airplanes and spacecraft. But aerospace technology has plenty of earthbound applications, too—like making race cars and golf balls more aerodynamic.

ARCHITECTURAL ENGINEERING
Architects may have designed the Eiffel Tower and the Hoover Dam, but architectural engineers are the ones who ensure that such structures really hold up. They work on systems like the lighting, plumbing and ventilation of a building and seek out the safest and most cost-efficient construction methods. As the population expands in the Southwest, for example, architectural engineers are investigating new ways to build on land that’s nothing but sand and sagebrush.

AGRICULTURAL ENGINEERING
Cooks aren’t the only people behind tasty meals. We can also give thanks to agricultural engineers for our daily bread. They devise ways to make sure crops get the proper nutrients, design state-of-the-art harvesting equipment, and figure out environmentally friendly disposal methods for agricultural waste. But you won’t always find an agricultural engineer down on the farm; many work in labs experimenting with farming techniques such as hydroponics—the science of growing plants in fluids.

BIOENGINEERING/BIO MEDICAL ENGINEERING
Today some of the most important medical breakthroughs are being orchestrated by bioengineers. Working with biologists and medical doctors, bioengineers develop artificial organs, prosthetic devices and medical instruments. Bioengineering has applications beyond the medical realm as well, often crossing over into agricultural and environmental engineering.

CIVIL ENGINEERING
In one of the largest fields of engineering, civil engineers work on buildings, bridges, dams, roads and other key structures. They plan, design and supervise the construction of facilities like airports and water treatment plants. In the near future, civil engineers will create special rail beds for the magnetic levitation trains of tomorrow. And in the distant future of sci-fi speculation, it may be civil engineers who make Mars a hospitable human habitat.

CHEMICAL/BIOLOGICAL ENGINEERING
Chemical engineers develop methods to transform raw materials into products we use every day. This means they play a crucial role in producing pharmaceuticals, soft drinks and even makeup. This field of engineering crosses over into others, including petroleum, materials and environmental engineering. Chemical engineers are also heavily involved in the emerging biotechnology industry.

COMPUTER ENGINEERING
Computer engineers deal with all aspects of the design, construction and operation of computer systems. They use digital and analog circuits to create computer hardware. And because manufacturers put microchips in everything—cars, toys, telephones—computer engineers are always in demand. Computer engineers also work within other engineering disciplines—for example, teaming up with civil engineers to design software to test the stress points in a bridge.

ELECTRICAL ENGINEERING
If you can switch it on, chances are that an electrical engineer was involved. Electrical engineers devise ways to take energy from turbines, fuel cells, hydroelectric plants and solar panels and transfer it to homes, factories and businesses. They also design components that move digital information from place to place, meaning that they’re behind much of the technology in computers, cell phones, satellites and televisions.
More Example Engineering Disciplines

Engineering Science/Physics
One kind of engineer bridges the gap between theoretical science and practical engineering. Engineering science/physics combines the fundamentals of engineering with a deep understanding of mathematical and scientific principles. From digital electronics design to nuclear radiation instrumentation, many of today's most complex engineering problems require the sharp minds of engineering science/physics graduates.

General Engineering
How do you invent a new technology and bring it to market? Ask a general engineer. As a comprehensive, interdisciplinary program, general engineering combines basic sciences, engineering sciences, and engineering design. General engineers have to know how to integrate engineering with solid business principles to succeed in both engineering and nonengineering careers.

Manufacturing Engineering
From automobiles to sports equipment to foodstuffs, manufacturing engineers are there from beginning to end. They work with all aspects of manufacturing processes, including automation, production control, and materials handling. When products are made to high-quality standards in the quantities needed and are available when and where customers demand, it's a good bet that a manufacturing engineer was involved.

Mechanical Engineering
Mechanical engineers design and develop everything you think of as a machine—from supersonic fighter jets to bicycles to toasters. And they influence the design of other products as well—shoes, light bulbs, and even doors. Many mechanical engineers specialize in areas such as manufacturing, robotics, automation, and air conditioning. Others cross over into other disciplines, working on everything from artificial organs to the expanding field of nanotechnology.

Naval Architectural Engineering
Naval architects combine imagination, scientific principles, and engineering expertise to design the many different types of ships, boats, and equipment needed to operate in the ocean. Their challenge is to produce self-sufficient vessels that can transport people or cargo across long distances in an unforgiving environment.

Engineering Management
To say that engineering management manages is a bit of an understatement. Bridging the gap between engineering and management, engineering managers administer technical projects and budgets. They specialize in planning, organizing, allocating resources and directing activities that have a technological component. They are distinguished from other managers because they possess engineering knowledge as well as organizational skills.

Environmental Engineering
People often express concern for the environment, but environmental engineers are the ones preventing damage to the Earth and addressing its existing problems. They assist with the development of water distribution systems, recycling methods, sewage treatment plants and other pollution prevention and control systems. Environmental engineers constantly seek out new ways to improve air quality and reduce the use of pesticides, allowing our lives to be both modern and Earth-friendly.

Industrial Engineering
Industrial engineers are smooth operators. They organize materials, machines, information, and people to ensure that an industrial production process functions smoothly. Often found in manufacturing, industrial engineers work with design, quality control and the human factors of engineering. Their training in technical problem-solving makes them ideal for managing projects.

Materials Engineering
Materials engineers work with plastics, metal and ceramics. Or more accurately, they make these materials work for us, turning raw substances into useful products like Gore-Tex, high-performance snow skis and fiber-optic cables. Teams of materials engineers created the U.S. Air Force’s stealth technology that renders a lighter plane’s surface nearly invisible to radar.

Mining Engineering
Miners and mining engineers are the people who figure out how to bring valuable resources up out of the ground. Along with geologists, they locate and appraise the Earth’s minerals. They also design the layout of mines, supervise their construction and figure out how to transport materials out of them. Miners and mining engineers need to know how to safety mine the natural wealth underground without destroying the land above or disrupting the people who live upon it.
Example Engineering Disciplines

NUCLEAR ENGINEERING
Nuclear engineers develop methods and instruments to harness nuclear energy, one of the most powerful energy sources known. Some nuclear engineers specialize in the development of nuclear power sources for long-distance spacecraft; others explore industrial and medical uses for radioactive materials. Often, nuclear engineers work with nuclear fuel at power plants and manage the safe disposal of nuclear waste.

SOFTWARE ENGINEERING
Software engineers develop complex computer programs that are used in almost every part of the human endeavor. They often work in teams to analyze, design, construct and test these programs, which are vital for harnessing the power of modern computers. They use special models, methods and tools to ensure that software is of high quality and produced in a cost-effective and timely manner.

PETROLEUM ENGINEERING
Petroleum engineers can be found wherever there might be oil—from the desert to chilly offshore ocean rigs. They labor to get oil out of the ground and into—among other places—your gas tank. And that's no small feat. Petroleum engineers might be involved in drilling or developing oil fields, or in ensuring that the oil drilling process is safe, economical and environmentally friendly. Petroleum engineers also work to develop alternative energy sources.

SYSTEMS ENGINEERING
Today's engineering advances usually rely on more than just one discipline. It's the systems engineer's job to bring all the people and pieces together and help them work harmoniously while meeting performance and cost goals and keeping on schedule. While they generally do not specialize in one particular field, systems engineers are well-versed in all technical areas so they can effectively fulfill their role as team captain.

OCEAN ENGINEERING
The key to unlocking the Earth's last frontier lies in the hands of ocean engineers. They design coastal and offshore structures such as piers, oil rigs and underwater tunnels. They solve diverse problems involving beach erosion, shoreline development, ocean energy recovery and marine pollution. And they accomplish all this by blending the fundamentals of oceanography, mathematics, physics and material science with civil, mechanical and electrical engineering.
Design challenges are not limited to engineering, but can also be found in other fields.

Artists, architects, interior designers, clothing designers, etc., are all “designing” products and solutions for us! So, they are also engaged in the design process!

So, what is design? Design can be loosely stated as the art of creating something that does not exist. Such a creation can be in the mind, too. For instance, you can “design a story” by thinking about the story plot, the characters you want to use in the tale, how long you want it to be, and who you want to be reading it.

Let’s first consider engineering design, and then you will perform a non-engineering design activity.
ASEE website states:
“For engineers, the design process is a series of steps that helps teams frame and solve complex problems. Anyone can do it! To figure out how to build something, engineering teams gather information and conduct research to understand the needs and challenges to be addressed.”

So, in a design cycle, the steps indicated in the diagram are done in sequence, and sometimes repeated, too, to improve the design!
Engineering Design Process

Follow these steps...

Ask/Concept
- What do I want to do?
- What is the problem?
- What have others done?

Imagine/Preliminary Designs
- What could be some solutions?
- Brainstorm ideas.
- Pick one to start with that you think will work the best.

Plan/Definitive Design
- Draw a diagram of your idea.
- Make lists of materials you will need to make it.
- Decide how it works. How will you test it?

Create
- Build a prototype.
- Test it.
- Talk about what works, what doesn't, and what could work better.

Improve/Iterate
- Talk about how you could improve your product.
- Draw new designs.
- Make your product the best it can be!

http://www.mos.org/doc/1559
Remember, the concept of design is not limited to engineering and can be applied to other life problems.

Let’s consider an example non-engineering design problem by challenging you to design a picnic!

Example of Engineering Design

<table>
<thead>
<tr>
<th>Main Subject</th>
<th>Design Challenge</th>
<th>Main Engineering Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>designing alarm circuits</td>
<td>electrical</td>
</tr>
<tr>
<td>astronomy</td>
<td>designing parachutes</td>
<td>aerospace</td>
</tr>
<tr>
<td>solids & liquids</td>
<td>improving a play dough process</td>
<td>chemical</td>
</tr>
<tr>
<td>insects</td>
<td>designing hand pollinators</td>
<td>agricultural</td>
</tr>
<tr>
<td>human body</td>
<td>designing knee braces</td>
<td>biomedical</td>
</tr>
<tr>
<td>landforms</td>
<td>evaluating a landscape</td>
<td>geotechnical</td>
</tr>
<tr>
<td>light</td>
<td>designing lighting systems</td>
<td>optical</td>
</tr>
<tr>
<td>energy & heat</td>
<td>designing solar ovens</td>
<td>renewable energy</td>
</tr>
<tr>
<td>water</td>
<td>designing water filters</td>
<td>environmental</td>
</tr>
</tbody>
</table>

Source: Engineering is Elementary, http://www.eie.org/eie-curriculum/curriculum-units
Your 15-Minute Design Challenge:

To design a picnic for your friends.

- Brainstorm how you would plan and organize a picnic for your friends. Consider each of the steps in the design cycle (slide 13) and address each one.

- Assuming that you organized and held such a picnic, what might be some things you might have missed during planning the first time, and how can you use that to “improve” the picnic the second time?

- How is this activity similar to designing a new house or designing spacecraft to take us to the moon?
Design Challenge: Design a Picnic for Your Friends

Example Questions to Answer

- Where do you want to hold the picnic? At home, a park, a rented place?
- How many friends to invite? Via Facebook, text, email?
- What day/time? How much advance notice so you can make sure everyone might has that day open?
- What foods and beverages to provide?
- What games or activities to plan?
- What is your budget? Total all estimated costs on a financial sheet. If costs too much, iterate and revise your plan.
- Will the picnic plan be acceptable to your parents/guardians?
Post-Lesson Quiz

1. What is engineering?

2. List some example design challenges.
1. What is engineering?

Engineering is using science and mathematics to solve problems that improve the world around us. For example, engineers design toasters, robots, light bulbs, air conditioning, surgical tools, software, snowboards, shoes, ships, radar, oil rigs, and nanotechnology and pollution solutions.

2. List some example design challenges.

Possible answers are unlimited! Examples: designing water treatment plants, highway bridges and tunnels, factory assembly lines, and even vacations and picnics!
Vocabulary

design: Loosely stated, the art of creating something that does not exist.

engineering: The use of science and mathematics to solve problems to improve the world around us.

engineering design process: A series of steps used by engineering teams to guide them as they develop new solutions, products or systems. The process is cyclical and may begin at, and return to, any step.