
How Do
You Make
a Program
Wait?

1. What is an algorithm?

2. Can you think of a reason why it might be
inconvenient to program your robot to
always go a precise distance?

3. What is a stimulus? Can you think of a
stimulus the robot could detect? What
sensor would it use to detect it? 2

How Do You Make a Program Wait? Pre-Quiz

1. What is an algorithm?

An algorithm is a clear and specific procedure for solving a problem in
a finite number of steps.

2. Can you think of a reason why it might be inconvenient to program
your robot to always go a precise distance?

If the distance is very far, this could take up a lot of time.
Inconsistencies in the robot itself (power, battery charge) can also
cause the robot to not always go the exact distance you program it.

2. What is a stimulus? Can you think of a stimulus the robot could
detect? What sensor would it use to detect it?

A stimulus is something that is sensed by a robot or animal and causes
it to act. For the purposes of the lesson, it is sensed by the robot and
this may cause it to act in a different manner.

Example stimulus & sensor: The robot could detect a wall in front
of it with a touch sensor or an ultrasonic sensor.

3

How Do You Make a Program Wait? Pre-Quiz

Objective

To learn to use conditional commands.

In today’s lesson, we will investigate:

 Why it is helpful to use conditional commands in
programming

 How to use wait blocks to program a LEGO robot to respond
to the presence of a stimulus

4

Day 1: Programming Using Wait Blocks
(50 minutes)

 An algorithm is a clear and specific procedure for solving a
problem in a finite number of steps.

 Addition algorithm: A systematic process that always
produces the correct answer when numbers are added:

1 1

1 2 3

+ 7 8 9

9 1 2

 Do This: For worksheet question 1, try the algorithm (as
above) for adding these two numbers:

345 + 176 = _______

Did the algorithm result in the same answer for everyone? 5

Review: What is an algorithm?

 Programming is designing an algorithm to solve a
problem.

 You need to have commands that are clear and precise
because the robot will follow them exactly.

 Each step is important. If you make an error in any step,
the robot makes that same error!

 Do This: Write down the detailed steps for the addition
algorithm you just performed. For worksheet question 2,
start with step 1, “Write both numbers one above the other,”
and so on.

 Let’s discuss what everyone has written down so we
understand how the algorithm can be written down in
steps so that a computer could execute them.

6

Programming as an Algorithm

Good algorithms
should be flexible.

Algorithms are useful
because they can be
used to solve many similar problems,
not just a specific problem.

 For example, the addition algorithm gives the
correct sum—no matter what numbers are added. 7

Designing Good Algorithms

 So far, we have only learned about programming in terms of
exact distances.

 Imagine we are programming the robot to go through a maze.
We could achieve one step of this by saying “I want my robot
to go five rotations forward then turn left.”

8

5 rotations

Designing Good Algorithms (continued)

 But what happens if we start the robot a little too far back (at
the blue circle instead of the green)? The robot will turn too
early (at the blue star instead of the green)!

 Do This: Describe such problems on worksheet question 3.

 As a result, that program is not very helpful because it will
only work in one specific case.

 But what if we could program the robot to turn when it
senses the wall? The robot could start from any distance and
still make the turn at the correct time.

 In other words, the algorithm we design would work in a
variety of situations, which means it would be far more
useful.

9

Designing Good Algorithms (continued)

5 rotations

 It turns out we can design this kind of algorithm by
using conditional commands.

A conditional command is a command whose action
depends on a condition being satisfied.

Many types of conditional
commands exist.

 Example: If you see a stop sign, then stop!

 This is conditional because
the action (stop!) depends
on a condition (seeing a stop sign). 10

Conditional Commands

 We will be focusing on conditional statements using until.
Example: “Play at recess until you hear the bell ring. Then
go back to class”

 Notice, that you do not have to keep track of exactly how
long you can play at recess; you will know to go to class
when you hear the bell ring.

 Do This: Write a sequence of similar steps to tell a robot to
stop when it bumps into a wall. (worksheet question 4)

 Let’s discuss what each of you have written down. 11

1. Play at recess 2. Wait until you

hear the bell

3. Go to class

Conditional Commands (continued)

Let’s do a simple demo of how it is easier to use
conditional commands than specific commands.
 Do This: Set up a simple maze: Use tape on the floor to mark

off a 2-foot wide track that ends at a wall 5 feet away.

 Blindfold a student volunteer to serve as the “robot.”

 Have another student volunteer command the “robot”
through the maze, making a left turn at the end when the
route terminates at the wall.

1. First try using only one of the two commands at a time:
“move forward (or backward) X steps” or “turn left.”

2. Then try using only one of the two commands at a time:
“move forward with your hands stretched UNTIL you
sense the wall” or “turn left.”

12

Maze Demonstration
Conditional Commands (continued)

As a group, discuss your thoughts:

 How did using the conditional command change the robot’s
success with the instructions?

 Was the robot volunteer able to move faster with the
conditional command?

 Note that the student volunteer used his/her sense of
“touch” to navigate the maze. If he had used his “eyes”
(light sensor), then the task could have been performed
much faster!

 Likewise, a robot could use a variety of sensors to perform
the same task.

 During the next class, we will learn about programming
the LEGO taskbot using conditional commands.

13

Conditional Commands (continued)
Maze Demonstration

Today, when programming your robot, use the conditional
command ideas we discussed during the last class. If you want to
make your robot keep moving forward and stop when it bumps
into a wall, add a touch sensor to it and use the conditional
command “until.”

The robot should go forward until the touch sensor hits the wall.
Then the robot should stop.

14

1. Move forward 2. Wait until the touch

sensor is pressed

3. Stop

Notice that now the robot does not have to keep track of how
far it should move forward!

Next, we will develop an NXT program to implement this.

Day 2: Programming with Wait Blocks
(50 minutes)

15

 We already know which block to use for the first command
– a move block.

 We want the direction to be forward,
and the steering to be in the middle.

 But we have a problem:
What should we set the duration to?

 We don’t know exactly how many rotations or seconds it will
take the robot to hit the wall.

 So, let’s select “unlimited” from the drop-down menu.

1. Move forward

Programming with Wait Blocks (continued)

16

2. Wait until the touch

sensor is pressed

 For the second part of the program, we need to use a new
kind of block – the wait block.

 Wait blocks tell the robot to wait until a specified stimulus
occurs before going on to the rest of the program.

 A stimulus is an action that can be perceived by the robot
that causes it to move on to the next part of the program.

 In this case, we want to wait until the wall presses in the
touch sensor (when it bumps into it) and then stop the
robot.

 So, the touch sensor being pressed is our stimulus.

Programming with Wait Blocks (continued)

 The wait block is orange in color and has an hour-
glass icon over it. Hover the cursor over the wait block
and several different types of wait blocks appear.

 The one that shows a finger pressing a button is the
touch sensor wait block. Drag this block next to the
move block.

 Notice that if you click on the drop-down menu, you
can change the stimulus that controls the wait block
to an action perceived by many other sensors.

 Also notice that the wait block shows the touch
sensor connected to Port 1. Make sure that the touch
sensor is connected to Port 1 on your robot.

17

Programming with Wait Blocks (continued)

18

 Once the touch sensor has been pressed, we want the robot to stop.

 We can achieve this by simply dragging a move block down and setting
direction to Stop.

 Our program is now complete: The robot will go forward for unlimited
and wait until the touch sensor is pressed. When this happens, the
robot will stop and the program will end.

 Notice that nowhere in the program did we tell the robot how far it
needed to go forward until it hit the wall.

3. Stop

Programming with Wait Blocks (continued)

19

 Try to break each part of the task you are trying to achieve into a
conditional statement using “until” followed by “then.”
(In the example: The robot should go forward until the touch
sensor hits the wall. Then the robot should stop.)

 Whatever comes before the “until” should come before your wait
block. (In the example: “The robot should go forward.”)

 The wait block should depend on the condition following “until.”
(In the example: The touch sensor hits the wall.) We program this
by dragging down a wait block and selecting the correct sensor
from the dropdown menu.

 The move block that comes before the wait block should have
duration set to UNLIMITED. This makes the robot keep moving
until it is told to stop or change direction.

 Whatever follows “then” should come after the wait block.

Review: How to Use Wait Blocks

20

Do This: Complete questions 4 and 5 on the
worksheet with the logic of the program and make
sketches of the NXT blocks to implement it.

The next task is to implement the program on the
LEGO taskbot.

Then complete the worksheet, including listing the
program using the NXT software. Then download it
to the computer and check it out.

Discuss your findings as a group.
Was navigating the maze much faster and accurate?

Implementing the Simple Program

1. What is an algorithm?

2. Can you think of a reason why it might be
inconvenient to program your robot to
always go a precise distance?

3. What is a stimulus? Can you think of a
stimulus the robot could detect? What
sensor would it use to detect it? 21

How Do You Make a Program Wait? Post-Quiz

1. What is an algorithm?

An algorithm is a clear and specific procedure for solving a problem in
a finite number of steps.

2. Can you think of a reason why it might be inconvenient to program
your robot to always go a precise distance?

If the distance is very far, this could take up a lot of time.
Inconsistencies in the robot itself (power, battery charge) can also
cause the robot to not always go the exact distance you program it.

3. What is a stimulus? Can you think of a stimulus the robot could
detect? What sensor would it use to detect it?

A stimulus is something that is sensed by a robot or animal and causes
it to act. For the purposes of the lesson, it is sensed by the robot and
this may cause it to act in a different manner.

Example stimulus & sensor: The robot could detect a wall in front
of it with a touch sensor or an ultrasonic sensor.

22

How Do You Make a Program Wait? Post-Quiz

algorithm: A clear and specific procedure for solving a problem
in a finite number of steps.

conditional command: A command in which the completion of
an action depends on a condition being satisfied.
For example, if I see a stop sign [condition], I stop [action].

stimulus: Something that rouses or incites to activity.
For the purposes of the lesson, it is an action that can be
perceived by the robot that causes it to move on to the next
part of the program.

23

Vocabulary

24

Slide 1: Baseball player girl waiting; source: Microsoft® clipart: http://office.microsoft.com/en-
us/images/results.aspx?qu=baseball+player&ex=1#ai:MP900422161|mt:2|

Slide 7: Woman doing yoga stretch; source: Microsoft® clipart : http://office.microsoft.com/en-
us/images/results.aspx?qu=yoga&ex=1#ai:MC900439917|

Slide 10: Boy holding stop sign; source: Microsoft® clipart: http://office.microsoft.com/en-
us/images/results.aspx?qu=stop&ex=1#ai:MP900422690|mt:2|

Device and programming images from LEGO MINDSTORM NXT User’s Guide http://goo.gl/wuhSUA

Screen captures and diagrams by author

Images Sources

http://office.microsoft.com/en-us/images/results.aspx?qu=baseball+player&ex=1#ai:MP900422161|mt:2|
http://office.microsoft.com/en-us/images/results.aspx?qu=yoga&ex=1#ai:MC900439917|
http://office.microsoft.com/en-us/images/results.aspx?qu=stop&ex=1#ai:MP900422690|mt:2|
http://goo.gl/wuhSUA

