App Inventor CheatSheet

Listing of blocks and functions:

wen Scroentnitalize | These blocks in the upper left-hand corner deal with the
startup of the program and allow the buttons to work.
0 UpdateSimListClick_| THEY SHOULD NOT BE CHANGED! Your algorithm

when - simListPicker.AfterPicking |

when GetContacts.Click |

when yserListPicker.AfterPicking |

when GetUserContactsButton.Click |

when RunSimButton.Click |

when ClearButton.Click |

should not need to use any of these blocks.

¢ curertsim " [o' simust_| These blocks in the upper center of the screen set up
PR, i definitions used to store the data received from the server.

+' webDBVame °° 4 % ContactList

THEY SHOULD NOT BE CHANGED! You should not
need any of these blocks or definitions, as the program

%' UserContasts will be converting them to an easier format. (See next set

of blocks

)

T e | These blocks contain a list of the two users coming into contact, the

time they came into contact and a list of which users are infected. In

g8t Conto 4 ietlser2 | UserListlsInfected, User01 is listed first, User02 is listed second, and

<" ContactListTime |

<" UserListisinfected |

wh
wen B Diseasens Gotvalue | S useriDtoindex |

‘s checkinfection |

to |
Y ProcessActiveSims | i printContact | v InfectUser
ta ta
~ ProcessUsers « InfectionEvent

> ProcessContacts |

to

w PrintAllinfected

° H LogMessageTop |

2 B | ogmessageBottom |

|

Simulating the Bug Activity—App Inventor CheatSheet

so on. Uninfected users show as “false” and infected users are “true.”

The first four blocks are used
to handle the incoming
simulation data.
LogMessageTop and Bottom
allow you to post text in the
box as needed. checklInfection
tells whether a user is infected
or not. Infection event is a
way to make a message to log
an infection. PrintAllInfected
outputs all infected users in a
list.

Basic How To:
You need to design an algorithm that tracks an infection through contacts. All contacts are in

chronological order and the easiest way is to step through each contact, determine if the
infection is passed on and mark whether a user is now infected or not. After this, you can print

out a list of the infected users.
Explanation of provided algorithm:

2 [l InfectedAligorithm _ara r
do

userTolnfect c glkobal
|

J

. InfectUser CurrentUser |

—
forrange wariable [21 name . rContact ‘

ﬁtar‘tc numbiar 1

e 1 = length of list =L cl gibal ¢ ontactListUser1

itepc numbar 1 |
1

—
if test [} can lisiTaCheck ﬂ, gobal ¢ ontactListUserl |

‘ checkinfection

indexToChack b
* “ C': YEUS currContact

—
if test C car = ‘C-'I gebal e ontactListUser2 |

checkinfection indexToCheck c value
|

currContact

userToinfect [, can H r:I 993l ¢ ontactListUser2 ‘
InfectUser select listitem . rj' value
!

currContact

LogMessageBottom

call MessageBottom q call InfectionEvent {:umm:lEvantq value currContact |
X

R ——

=l printalinfected I

1. Start with an infected user (selected on screen)
2. Use the “for range” block to go through the contacts in order
a. Use the “if” to see if the first contact in a list is infected
I. “If” they are infected
1. see “if” the second user is NOT infected
a. “If” second user is not infected, infect them
b. Log this contact as an infection event

3. Print out a list of infected users

Idiosyncrasies of the simple algorithm:
I. Ignores that the second user could infect the first user.
a. Easy to add with an OR block
I1. Ignores the possibility that not all contacts will infect.
a. Easy to add with random # and cutoff on an IF block

Simulating the Bug Activity—App Inventor CheatSheet

