FLUIDS

Archimedes' Principle Pascal's Law Bernoulli's Principle

FLUIDS AND BUOYANT FORCE

• Fluids – Matter that flows (liquid and gas).

 Mass density – Mass per unit volume of a substance. It is often represented by the Greek letter ρ (rho).

$$\rho = \frac{m}{V}$$

 Buoyant force – The upward force on objects that are partially or completely submerged in fluids.

ARCHIMEDES² PRINCIPLE

ARCHIMEDES' PRINCIPLE

"Any object completely or partially submerged in a fluid experiences an upward force equal in magnitude to the weight of the fluid displaced by the object."

FOR FLOATING OBJECTS

Buoyant force:

$$F_B = F_g$$
(displaced) = $m_f g$

For floating objects:

Image source: 2008 Yupi666, Wikimedia Commons http://commons.wikimedia.org/wiki/File:Buoyancy.svg

ball: Displaced water weighs less than the ball hull: Displaced water weight equals hull weight

BUOYANT FORCE

Buoyant force is also equal to the difference between the weight of an object in air and weight of an object in fluid.

$$\mathbf{F}_{\mathbf{B}} = \mathbf{W}_{\mathbf{air}} - \mathbf{W}_{\mathbf{fluid}}$$

In other words, the apparent loss in weight of a body immersed in a fluid is equal to the weight of the displaced fluid.

Image source: Bill Winfield. Used with permission.

OTHER RELATIONSHIPS

Net force, F_{net} is the object's apparent weight:

$$F_{net} = (\rho_f V_f - \rho_o V_o) g$$

where: m=ρV

In solving buoyancy problems, the following derived expression is used:

$$F_{g}(object) = \rho_{o}$$
$$F_{B} \qquad \rho_{f}$$

PASCAL'S LAW

PRESSURE

Pressure is a measure of how much force is applied over a given area.

units:

- $1 Pa (Pascal) = 1 N/m^2$
- 1 atm = 10⁵ Pa

PASCAL'S LAW

"Pressure applied to a fluid in a closed container is transmitted equally to every point of the fluid and to the walls of the container."

- Pressure applied anywhere to a fluid causes a force to be transmitted equally in all directions.
- Change in pressure disperses equally throughout the fluid.
- Force acts at right angles to any surface in contact with the fluid.

$$A_1 = 1 m^2$$

 $F_1 = 10 N$
 $P_1 = __?$

$$A_2 = 10 \text{ m}^2$$

 $P_2 = ___?$
 $F_2 = __?$

Image source: Bill Winfield. Used with permission.

BERNOULLI'S PRINCIPLE

TYPES OF FLUID FLOW

Laminar – When fluid particles move along the same smooth path. The path is called a streamline.

Turbulent – When fluid particles flow irregularly causing changes in velocity. They form eddy currents.

Source: Wikimedia Commons <u>http://commons.wikimedia.org/wiki/File:Toky.png</u>

BERNOULLI'S PRINCIPLE

Continuity equation:

$$\mathbf{A}_{1}\mathbf{v}_{1}=\mathbf{A}_{2}\mathbf{v}_{2}$$

Bernoulli's principle:

"The pressure in a fluid decreases as the fluid's velocity increases."

Bernoulli's equation:

 $P + \frac{1}{2}\rho v^2 + \rho gh = constant$

Bernoulli's equation at different points in a horizontal pipe:

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

Image source: 2013 Emily Sappington, University of Houston

Bernoulli's Equation

p = Pressure V = Velocity ρ = Density

Inviscid Steady Incompressible (low velocity) No heat addition.

Negligible change in height.

Along a streamline :

Restrictions :

static pressure + dynamic pressure = total pressure $P_{s} + \frac{\rho V^{2}}{2} = P_{t}$ $\left(P_{s} + \frac{\rho V^{2}}{2}\right)_{1} = \left(P_{s} + \frac{\rho V^{2}}{2}\right)_{2}$

Source: NASA http://www.grc.nasa.gov/WWW/k-12/airplane/bern.html

Bernoulli's equation at two different points of varying height

Source: http://commons.wikimedia.org/wiki/File:BernoullisLawDerivationDiagram.svg