Bone Repair & Calcification

> WHAT BIOMEDICAL ENGINEERS NEED TO KNOW <

Healing Times & Calcification

Transverse Fracture

A fracture straight across the bone, usually the result of sharp, direct blows or stress fractures caused by prolonged running.

The break occurs at a right angle to the bone's long axis.

Spiral Fracture

baseball pitcher's broken arm →

A bone fracture caused by a twisting force.

Also called torsion fracture.

Impacted Bone

Compound/Open Fracture

Comminuted Fracture

Treatment Options

Fracture treatment depends on:
Location, fracture type and its characteristics
The person's age
The person's activity level
Bone quality

Nonsurgical Treatment Options

Surgical Treatment: External Fixation

Internal vs. External Fixation

Location of Fracture

- Which bones are more likely to break? Ribs, wrists, fingers, toes, collarbones
- Why are certain bones more likely to fracture?
 - The body is designed to withstand forces.

Legs receive impact while walking and jumping. Thus, leg bones require a significant amount of force to break.

How Does Treatment Depend on Location?

- Certain treatments cannot be used on some fractures due to the location.
 - For example:
 - Casts cannot be used on all parts of the body, such as moving joints.
 - Finger or toes are often treated by using a nearby finger or toe as splint.

The forces the body withstands at certain locations allows some treatments.