Protein Aggregation Worksheet

Instructions: In this activity, you will make observations about how surfactants affect protein aggregations in egg whites. Based on the data you collect, you will make connections to bioengineering applications of surfactants.

Materials		
 100 mL egg whites (from carton) 	1 permanent marker	
 1 50 mL graduated cylinder 	timer (can use phone)	
 5 collection tubes with caps 	2 mL mystery solution #1	
• 1 bowl	2 mL mystery solution #2	
 1 hand mixer with two beaters 	2 mL mystery solution #3	
• 1 spoon	2 mL mystery solution #4	
 2 mL water 		

Control Method:

- 1. Use the permanent marker to label one of the collection tubes as "control." This will be for only egg whites.
- 2. Measure out 20 mL of egg whites and pour it into the bowl.
- 3. Use the bulb pipette to measure 1 mL water and pipe into the egg whites.
- 4. Repeat this so there are 2 mL of water added to the egg whites.
- Set the timer for 2 minutes.
- 6. On the lowest speed, use the hand mixer to beat the egg whites for 2 minutes.
- 7. Using the spoon, carefully scrape the foam off the top of the egg whites. Note: Be careful to only scoop off the foam and not the egg whites themselves.
- 8. Pour the egg whites into the appropriate collection tube.
- 9. Make observations in the Data Sheet below.
- 10. Pour the egg whites back into the bowl.
- 11. Set the timer for 2 minutes.
- 12. Beat for another 2 minutes on the lowest speed.
- 13. Again, scrape the foam off of the top and pour into collection tube.
- 14. Make observations in the Data Sheet below.

Mystery Solution Method:

- 1. Use the permanent marker to label the rest of the collection tubes as 1, 2, 3, or 4.
- Measure out 20 mL of egg whites and pour it into the bowl.
- 3. Use the bulb pipette to measure 2 mL of the first mystery solution you will be testing.
- 4. Add this to the egg whites in the bowl.
- 5. Set the timer for 2 minutes.
- 6. On the lowest speed, use the hand mixer to beat the egg whites for 2 minutes.

BROUGHT TO YOU BY

Name: Date: Class:

7. Using the spoon, carefully scrape the foam off the top of the egg whites. Note: Be careful to only scoop off the foam and not the egg whites themselves.

- 8. Pour the egg whites into the appropriate collection tube.
- 9. Make observations in the Data Sheet below.
- 10. Pour the egg white mixture back into the bowl.
- 11. Beat for another 2 minutes on the lowest speed.
- 15. Again, scrape the foam off of the top and pour into appropriately numbered collection tube.
- 16. Make observations in the Data Sheet below.

Control

12. Repeat the above steps for the other mystery solutions.

Observations:

Data Sheet

After initial 2 minutes	
After additional 2 minutes	
Mystery Solution 1	Observations:
After initial 2 minutes	
After additional 2 minutes	

BROUGHT TO YOU BY

lame:	Date:	Class:

Mystery Solution 2	Observations:
After initial 2 minutes	
After additional 2 minutes	
Mystery Solution 3	Observations:
After initial 2 minutes	
After additional 2 minutes	
Mystery Solution 4	Observations:
After initial 2 minutes	
After additional 2 minutes	

1. Based on your results, which of the solutions would you recommend a bioengineer to investigate further to prevent protein aggregation in medicines? Why?

2. Considering the solution you chose to research further, what type of substance do you think it is? Why?

TEACHENGINEERING.ORG

BROUGHT TO YOU BY

