TeachEngineering STEM Curriculum for K-12

The Extracellular Matrix and Molecular Biomechanics

Subscribe to our newsletter at TeachEngineering.org to stay up-to-date on everything TE!

⁰¹⁹⁹⁹ Addison thissley Longman, Inc.

Center for Engineering MechanoBiology

An integrated research and education program for understanding, manipulating, and engineering function of molecules, cells, and tissues in plants and animals.

Introduction to the ECM

Extracellular macromolecules

Collagen, enzymes, and glycoproteins Provide structure and biochemical support

The extracellular matrix is a dense network of proteins that:

Lies between cells Is made by the cells within the network

Composition varies between cell types Functions- common to all cells

Cell adhesion Cell to cell communication Cell differentiation

Introduction to the ECM

Animal cells

Basement membrane (sheet-like deposit of ECM for epithelial cell to rest on) Interstitial matrix Connective tissue (varies in type by cell)

Plant cells

Includes cell wall

Secreted via exocytosis by the cell Mesh of proteins and glycosaminoglycans (GAGs)

1. Proteoglycans

Carbohydrates with net negative charge Attract Na⁺ ions Regulate osmolarity of cells surrounding

2. Heparin

tumor

Polysaccharides Related to development, blood coagulation, and metastasis Hyaluronate

Secreted via exocytosis by the cell Mesh of proteins and GAGs

3. Chondroitin

Cartilage, tendons, ligaments and walls of aorta

4. Keratin

Cornea, bones, hair and horns of animals

5. Hyaluronic Acid

Polysaccharide with acid group attached Resists compression, provides turgor Absorbs H₂0

Secreted via exocytosis by the cell Mesh of proteins and GAGs

6. Collagen

Provides structural support to tissues Family of >20 different proteins in the ECM Most abundant proteins in animals Secreted from cells and assembled in the extracellular space

Secreted via exocytosis by the cell Mesh of proteins and GAGs

7. Elastic fibers

Imparts elasticity to tissues

Elastin monomers (i.e., tropoelastin subunits) are organized into

fibers

The fibers are so strong and stable they can last a lifetime Strength of elastic fibers arises from covalent crosslinks Elasticity of elastic fibers arises from the hydrophobic regions

Secreted via exocytosis by the cell Mesh of proteins and GAGs

Secreted via exocytosis by the cell Mesh of proteins and GAGs

8. Laminins

Family of ECM proteins Found in virtually all tissues of all animals Provide an adhesive substrate for cells Resist tensile forces in tissues

Secreted via exocytosis by the cell Mesh of proteins and GAGs

Mechano- transduction			Sub-nuclear localization of proteins		Chromatin organization DNA damage response
		LAMINS			homeostasis
Nuclear envelope integrity			Sp	atial	Nucleocytoplasmic transport
			organization of genome		Antioxidant response
					DNA replication
					Gene regulation

TeachEngineering

Epithelial cells

Fibroblast

© 2012 Pearson Education. Inc.

Extracellular matrix

(b) Immuoflourescence

20 µm

(d) Electron micrograph

0.4 µm

Brought to you by

The Basal Laminas

Structure and Function

Specialized sheets of extracellular matrix

Composed of at least 2 distinct layers

Found at the basal surface of epithelial sheets, neuromuscular

junctions, and in the nucleus

Is a supportive network to maintain epithelial tissues

Diffusion barrier

Collection site for soluble proteins, e.g., growth factors

Guidance signal for migrating neurons

Can sense mechanical properties in environment

Regulates cell migration, proliferation, differentiation and

an epreia ch Engineering

The Basal Laminas

Structure

Increasing stiffness

Can vary in stiffness and elasticity

Dependent on collagen versus elastin concentration

Lamin A

Nuclear Lamin

Occurs around the nuclear membrane Determines flexibility of membrane Protects DNA Low amounts= more flexibility, more likely to

migrate

High amounts= more stiff, less likely to

migrate

Nature Reviews | Molecular Cell Biology

Structure/Components Lamin A

Nuclear Lamin

Effects on gene expression Adhesion complexes and the actinmyosin cytoskeleton Contractile forces are transmitted

through

transcellular structures

Brought to you by

Engineering

