Linear Regression Activity

The table below shows the number of small specimen-BMD scanners in the United States from 1998 to 2004.

<table>
<thead>
<tr>
<th>Year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Specimen BMD Scanners</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>33</td>
<td>52</td>
<td>80</td>
</tr>
</tbody>
</table>

a. Linearize the data. That is, make a table with x- and y-values, where x is the number of years since 1998 and y is the number of BMD scanners. Then make a scatter plot of the linearized data.

Subtract 1998 from each year (your x) and find the natural logarithm of each BMD scanner quantity.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ln y$</td>
<td>1.60944</td>
<td>2.07944</td>
<td>2.56495</td>
<td>3.04452</td>
<td>3.49651</td>
<td>3.94124</td>
<td>4.38203</td>
</tr>
</tbody>
</table>

The scatter plot suggests that there may be a linear relationship between x and $\ln y$. Plot your points here and be sure to label and scale your axis.

b. Find a regression equation for the linearized data.

Use $\text{LinReg}(ax+b)$ on the STAT CALC screen to find the linear regression equation. LinReg

$y = ax + b$

$a = 0.464033$

$b = 1.626204$

$r^2 = 0.99963$

$r = 0.99981$

Write out linear equation: $\ln y = 0.4640x + 1.6262$
c. Use the linear regression equation to find an exponential model for the original data.

To find a model solve the regression equation in part b for \(y \).

\[
\ln y = 0.4640x + 1.6262 \\
e^{\ln y} = e^{0.4640x + 1.6262} \\
y = e^{0.4640x} \cdot e^{1.6262} \\
y = 5.0845e^{0.4640x} \\
\]

Raise \(e \) to each side.

\[e^{\ln y} = y \]

Product Property of Exponents

\[e^{1.6262} \cdot 5.0845 \]

The number of small-specimen BMD scanners in the United States between 1998 and 2004 can be modeled by the exponential function \(y = 5.0845e^{0.4640x} \).

d. Use the exponential model to predict the number of web sites that there will be in 2015.

The year 2015 is 17 years after 1998, so replace \(x \) with 17 in the exponential function.

\[
\begin{align*}
y &= 5.0845e^{0.4640x} \\
y &= 5.0845e^{0.4640(17)} \\
y &= 13,550.74 \text{ BMD scanners in 2015.}
\end{align*}
\]

Yes, this prediction makes sense.