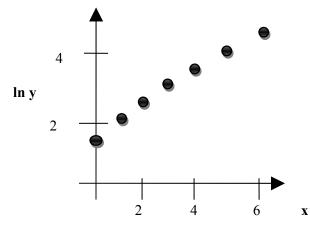
Class/Period:

Linear Regression Activity

The table below shows the number of small specimen-BMD scanners in the United States from 1998 to 2004.


Year	1998	1999	2000	2001	2002	2003	2004
Small Specimen BMD Scanners	5	8	13	21	33	52	80

a. Linearize the data. That is, make a table with x- and y-values, where x is the number of years since 1998 and y is the number of BMD scanners. Then make a scatter plot of the linearized data.

Subtract 1998 from each year (your x) and find the natural logarithm of each BMD scanner quantity.

x	0	1	2	3	4	5	6
ln y	1.60944	2.07944	2.56495	3.04452	3.49651	3.94124	4.38203

The scatter plot suggests that there may be a linear relationship between x and $\ln y$. Plot your points here and be sure to label and scale your axis.

b. Find a regression equation for the linearized data.

Use LinReg(ax+b) on the STAT CALC screen to find the linear regression equation. LinReg y = ax + b

a = 0.464033

b = 1.626204

 $r^2 = 0.99963$

$$r = 0.99981$$

Write out linear equation: $\ln y = 0.4640x + 1.6262$

c. Use the linear regression equation to find an exponential model for the original data.

To find a model solve the regression equation in part **b** for *y*.

 $\begin{array}{ll} \ln y = 0.4640x + 1.6262 \\ e^{\ln y} = e^{0.4640x + 1.6262} \\ y = e^{0.4640x + 1.6262} \\ y = e^{0.4640x + 1.6262} \\ y = e^{0.4640x} \cdot e^{1.6262} \\ y = 5.0845e^{0.4640x} \\ \end{array} \begin{array}{ll} Raise \ e \ to \ each \ side. \\ e^{\ln y} = y \\ Product \ Property \ of \ Exponents \\ e^{1.6262} \ \square \ 5.0845 \\ \end{array}$

The number of small-specimen BMD scanners in the United States between 1998 and 2004 can be modeled by the exponential function $y = 5.0845e^{0.4640x}$.

d. Use the exponential model to predict the number of web sites that there will be in 2015.

The year 2015 is 17 years after 1998, so replace x with 17 in the exponential function.

 $y = 5.0845e^{0.4640x}$ $y = 5.0845e^{0.4640(17)}$ y = 13,550.74 BMD scanners in 2015.

Yes, this prediction makes sense.