

Living World

Biosphere: thin layer of the living world that surrounds the nonliving world.

organisms

air

soil

water

Biomes

 Major communities of organisms occurring together at relatively large scales, such as at the landscape-level.

- Tundra
- Deciduous Forest
- Grassland
- Tropical Rainforest

Taiga (conifers) Chaparral (scrub) Desert

Why do Biomes Differ?

- **Great differences in climate of earth**
- Living organisms require specific ranges in season, temperature, sunlight, rainfall and require interactions with other specific organisms
- Each major type of climate develops a characteristic type of vegetation
- Each type of plant life supports a characteristic variety of animal life.

Why do Biomes Differ?

- **Great differences in climate of earth**
- Living organisms require specific ranges in season, temperature, sunlight, rainfall and require interactions with other specific organisms
- Each major type of climate develops a characteristic type of vegetation
- Each type of plant life supports a characteristic variety of animal life.

http://en.wikipedia.org/wiki/File:Vegetation-no-legend.pt.JPG

Do biomes affect the size of populations?

Think about this as we discuss what a population is.

Populations

A population is a group of organisms of the same species that live and interact in the same place at the same time.

A population is made up of individuals of the same species that <u>interbreed.</u>

Four Rates Determine Population Size

Population numbers change due to: Mortality: death rate Natality: birth rate Immigration: movement of new individuals into the population Emigration: movement of current individuals outside the population

Size of a Population

Size of any population is the result of the relationships among these rates.

Which factors most influence the trend of :

Humans
Mule Deer
Red Wolves
WHY????

Population Rate Changes What do mortality and emigration have in common? What do natality and immigration have in common? •What must an organism be able to do to immigrate or emigrate? •How does a plant incapable of movement establish a new population?

Passive Dispersal

Used by organisms incapable of movement
 Animal
 Wind
 Water

In the same way that the web of life connects individuals, it also connects populations.

The Environment

Two Components:

Biotic: all living partsPlants, Animals

Abiotic: all nonliving parts
Soil, space
Sunlight, water, wind

Population Numbers Limited

The environment limits a population's size

Environment may slow, kill or enhance an individual's growth/life and hence affect the size of the population.

Limiting Factor

Any biotic or abiotic factor that can affect (+/-) the growth of a population.
 Temperature

 Moisture
 Amount of Sunlight
 Food Resources...

Identify the limiting factors in the next slide

Author's own picture Tucson, AZ

Limiting Factors

 Limiting factors may be measured alone, however each factor affects the other, and together, they affect population size.

The effect may be either direct or indirect.

Water is an important abiotic factor. All organisms need water. Almost all chemical reactions needed to keep an organism alive take place in water. Water molecules are a part of many chemical reactions.

Limiting Factors

Consider water.

Do all organisms have the same needs?

•Evaluate the next 2 pictures and discuss their water needs. Is this limiting factor the same for both plant species?

Saguaro Cactus

Author's Picture Tucson, AZ

Columbine

Author's Picture Mt. Lemmon, Altitude for conifer forests Tucson, AZ

Populations and Limiting Factors

Limiting factors affect the density (number) of the population.

Under optimum conditions, the population will be favored and be able to reach maximum numbers.

Must limiting factors have a negative connotation?

Range of Tolerance

Limiting Factor Water, Temp., Sunlight...

Why is this always a bell-shaped curve?

Which variable changes?

Explain how rainfall amounts differ in need for deciduous forests and cacti.

Tolerance Graph

•Why did bluebirds and wood ducks suffer population declines??

What was their environmental limiting factor??

•How did humans rescue these two species??

Space as a Limiting Factor • Organisms require different amounts of space (abiotic factor).

Space needs relate to a biotic factor – the availability of food energy.

Why do space needs differ for plants and large meat-eating predators???

Limits to Population Size - Biotic

Predators

Disease

Competition

Environmental Stress (temperature...)

Carrying Capacity

The greatest number of individuals that a space can support indefinitely without degrading the environment

Carrying Capacity

Growth Curves

Carrying Capacity

Growth of a Population 1) Sigmoid (S-shaped) Curve Once carrying capacity is reached # deaths should = # births Environmental resistance builds up in form of **1.** disease **2.famine 3.** predation Results in slowed rate of increase Population reaches equilibrium Most common

Growth of a Population 2) Exponential Growth (Boom and Bust)

#s increase exponentially (doubling)
Exceeds carrying capacity
CRASH (resources exhausted)

Boom and Bust

Exponential curves typical for:
Insect plagues
Lemming populations
Blooms of algae
Rodents

Exponential Patterns

Single Housefly
Lays ~120 eggs
Half are female
Each female capable of 7 generations/yr
6,182,442,727,320 flies in one year!!!

Carrying Capacity

 Most important measure in determining population size.

WHY???

Represents the ability of abiotic and biotic factors in the environment to provide necessary resources

• How do humans affect the carrying capacity of ecosystems????

Global Stability

Threatened by: •Direct Harvesting •Pollution •Atmospheric Changes •Habitat Loss

Litter Decomposition Rates

Litter Decomposition Rates

(Refuse Industry Production, Inc., Garbage in America – The Choice is Yours)

Aluminum Can	80-100 years
Glass Bottles/Jars	1,000,000 years
Rubber Boot Soles	50-80 years
Leather	up to 50 years
Nylon Materials	30-40 years
Plastic Bags/Disposable Diapers	10-20 years
Newspaper	2-4 weeks
Orange or Banana Peel	2-5 weeks
Cigarette Butts	1-5 years