Review

1.) Rewrite as an exponent:

\[\log_7 49 = 2 \]

2.) Rewrite as a logarithm:

\[2^5 = 32 \]

3.) Evaluate:

\[\log_5 125 \]
Properties of Logarithms
• The properties of logarithms can be derived from the properties of exponents.
• We use these properties to solve equations.
Properties of Logarithms

Suppose m and n are positive numbers, b is a positive number other than 1, and p is any real number. Then the following properties hold.
<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>(\log_b mn = \log_b m + \log_b n)</td>
<td>(\log_3 9x = \log_3 9 + \log_3 x)</td>
</tr>
<tr>
<td>Quotient</td>
<td>(\log_b \frac{m}{n} = \log_b m - \log_b n)</td>
<td>(\log_{\frac{1}{4}} \frac{4}{5} = \log_{\frac{1}{4}} 4 - \log_{\frac{1}{4}} 5)</td>
</tr>
<tr>
<td>Power</td>
<td>(\log_b m^p = p \cdot \log_b m)</td>
<td>(\log_2 8^x = x \cdot \log_2 8)</td>
</tr>
</tbody>
</table>
| Equality | If \(\log_b m = \log_b n \), then \(m = n \). | \(\log_8 (3x - 4) = \log_8 (5x + 2) \)
so, \(3x - 4 = 5x + 2 \) |
Example:

Solve each equation.

1.) \(\log_8 (4x + 6) = \log_8 (8x - 2) \)
Example:

Solve each equation.

2. \(\log_9 x + \log_9 (x - 2) = \log_9 3 \)
Example:

Solve each equation.

3.) \(\log_p 64^{\frac{1}{3}} = \frac{1}{2} \)
Try:

Solve each equation.

\[4. \log_4 (2x + 11) = \log_4 (5x - 4) \]
Try:

Solve each equation.

5.) \(\log_{11} x + \log_{11} (x + 1) = \log_{11} 6 \)