\qquad
\qquad

STRESS, STRAIN AND HOOKE'S LAW PROBLEM SET

You will need to SHOW ALL WORK. Useful constants that you will need to know are in a table below. (assume given constants have 3 SF's). Please also note the relationships we've just discussed given below.

Material	Young's Modules, E (Pa)
Steel	200×10^{9}
Cast Iron	100×10^{9}
Concrete	20.0×10^{9}

$$
F=m * a \quad \sigma=\frac{F}{A} \quad \quad \varepsilon=\frac{\Delta l}{l_{0}} \quad \sigma=E * \varepsilon \quad F=-k * \Delta x
$$

1. A 3340 N ball is supported vertically by a 1.90 cm diameter steel cable. Assuming the cable has a length of 10.3 m , determine the stress and the strain in the cable.

$$
\begin{gathered}
\sigma=E * \varepsilon \rightarrow \frac{F}{A}=E * \frac{\Delta l}{l_{0}} \rightarrow \Delta l=\frac{F * l_{0}}{A * E} \\
\Delta l=\frac{3340 N * 10.3 \mathrm{~m}}{\left(\pi * .0095 \mathrm{~m}^{2}\right) *\left(200 * 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)}=.000607 \mathrm{~m} \\
\varepsilon=\frac{.000607 \mathrm{~m}}{10.3 \mathrm{~m}}=5.89 * 10^{-5} \mathrm{or} .00589 \%
\end{gathered}
$$

2. Consider an iron rod with a cross-sectional area of $3.81 \mathrm{~cm}^{2}$ that has a force of $66,700 \mathrm{~N}$ applied to it. Find the stress in the rod.

$$
\begin{gathered}
A=3.81 \mathrm{~cm}^{2} * \frac{1 \mathrm{~m}^{2}}{(100 \mathrm{~cm})^{2}}=.000381 \mathrm{~m}^{2} \\
\sigma=\frac{F}{A}=\frac{66700 \mathrm{~N}}{.000381 \mathrm{~m}^{2}}=1.75 * 10^{8} \mathrm{~N} / \mathrm{m}^{2} \text { or } 175 \mathrm{MPa}
\end{gathered}
$$

3. A concrete post with a 50.8 cm diameter is supporting a compressive load of 8910 Newtons. Determine the stress the post is bearing.

$$
\begin{gathered}
d=50.8 \mathrm{~cm} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=.508 \quad r=\frac{.508}{2}=.254 \mathrm{~cm} \\
\sigma=\frac{F}{A}=\frac{8910 \mathrm{~N}}{\pi *(.254 \mathrm{~m})^{2}}=44 \mathrm{kPa}
\end{gathered}
$$

4. The concrete post in the previous problem has an initial height of 0.55 m . How much shorter is the post once the load is applied (in mm)?

$$
\begin{gathered}
\varepsilon=\frac{\sigma}{E}=\frac{44 * 10^{3} \mathrm{~N} / \mathrm{m}^{2}}{20 * 10^{9} \mathrm{~N} / \mathrm{m}^{2}}=2.2 * 10^{-6}=\frac{\Delta l}{l_{0}} \\
\Delta l=2.2 * 10^{-6} * .55 \mathrm{~m}=1.2 * 10^{-6} \mathrm{~m}
\end{gathered}
$$

5. A construction crane with a 1.90 cm diameter cable has a maximum functioning stress of 138 MPa. Find the maximum load that the crane can endure.

$$
\begin{gathered}
\sigma_{\max }=\frac{F_{\max }}{A} \rightarrow F_{\max }=\sigma_{\max } * A \rightarrow 138 * 10^{6} \mathrm{~Pa} *\left(\pi *(.0095 \mathrm{~m})^{2}\right) \\
F_{\max }=39.1 * 10^{3} \mathrm{~N} \text { or } 39.1 \mathrm{kN}
\end{gathered}
$$

6. Consider Hooke's Law as a simple proportionality where F is directly proportional to delta x. Therefore, we know the force stretching a spring is directly proportional to the distance the spring stretches. If 223 N stretches a spring 12.7 cm , how much stretch can we expect to result from a of 534 N ?

$$
\frac{223 \mathrm{~N}}{534 \mathrm{~N}}=\frac{12.7 \mathrm{~cm}}{x} ; x=30.4 \mathrm{~cm}
$$

7. The figure below shows a column of fatty tissue, determine the strain in each of the three regions.

$$
\begin{gathered}
A=40 \mathrm{~cm}^{2} * \frac{1 \mathrm{~m}^{2}}{(100 \mathrm{~cm})^{2}}=.004 \mathrm{~m}^{2} \\
\text { FATTY TISSUE: } \sigma=E * \varepsilon \quad \varepsilon=\frac{\sigma}{E} \varepsilon=\frac{F / A}{E} \varepsilon=\frac{55 \mathrm{~N} / .004 \mathrm{~m}^{2}}{18 * 10^{3} \mathrm{~N} / \mathrm{m}^{\wedge} 2} \varepsilon_{f a t}=.76 \\
\text { TUMOR TISSUE: } \sigma=E * \varepsilon \quad \varepsilon=\frac{\sigma}{E} \varepsilon=\frac{F / A}{E} \varepsilon=\frac{55 \mathrm{~N} / .004 \mathrm{~m}^{2}}{106 * 10^{3} \mathrm{~N} / \mathrm{m}^{\wedge} 2} \varepsilon_{\text {tumor }}=.13
\end{gathered}
$$

