STRESS, STRAIN AND HOOKE'S LAW PROBLEM SET

You will need to SHOW ALL WORK. Useful constants that you will need to know are in a table below. (assume given constants have 3 SF's). Please also note the relationships we've just discussed given below.

$$
\begin{gathered}
\begin{array}{|c|c|}
\hline \text { Material } & \text { Young's Modules, E (Pa) } \\
\hline \text { Steel } & 200 \times 10^{9} \\
\hline \text { Cast Iron } & 100 \times 10^{9} \\
\hline \text { Concrete } & 20.0 \times 10^{9} \\
\hline
\end{array} \\
\\
F=m * a
\end{gathered} \quad \begin{aligned}
& F=\frac{F}{A}
\end{aligned} \quad \varepsilon=\frac{\Delta l}{l_{0}} \quad \sigma=E * \varepsilon \quad F=-k * \Delta x .
$$

1. A 3340 N ball is supported vertically by a 1.90 cm diameter steel cable. Assuming the cable has a length of 10.3 m , determine the stress and the strain in the cable.
2. Consider an iron rod with a cross-sectional area of $3.81 \mathrm{~cm}^{2}$ that has a force of $66,700 \mathrm{~N}$ applied to it. Find the stress in the rod.
3. A concrete post with a 50.8 cm diameter is supporting a compressive load of 8910 Newtons. Determine the stress the post is bearing.
4. The concrete post in the previous problem has an initial height of 0.55 m . How much shorter is the post once the load is applied (in mm)?
5. A construction crane with a 1.90 cm diameter cable has a maximum functioning stress of 138 MPa . Find the maximum load that the crane can endure.
6. Consider Hooke's Law as a simple proportionality where F is directly proportional to delta x . Therefore, we know the force stretching a spring is directly proportional to the distance the spring stretches. If 223 N stretches a spring 12.7 cm , how much stretch can we expect to result from a of 534 N ?
7. The figure below shows a column of fatty tissue, determine the strain in each of the three regions.

