Young's Modulus Practice Problems Answer Key

1. A patient's leg was put into traction, stretching the femur from a length of 0.46 m to 0.461 m. The femur has a diameter of 3.05 cm. With the knowledge that bone has a Young's modulus of ~ 1.6×10^{10} in tension, what force was used to stretch the femur?

 $F = Y (\Delta L/L_0)A$ $Y = 1.6 \times 10^{10} \text{ Pa} = 1600000000 \text{ Pa} (given)$ $L_0 = 0.46 \text{m} (given)$ $\Delta L = 0.001 \text{ m} (obtained from .461 \text{ m} - .46 \text{ m} - \text{the given amount of "stretch"})$ $A = \pi r^2 = 3.14 (1.525)^2 = 7.30 \text{ cm}^2 = 0.00073 \text{ m}^2 (obtained from given diameter of 3.05 \text{ cm})$ Now, using the equation above: $F = 1600000000 \times (.001/0.46) \times 0.00073$ F = 25,391.30 N

2. Using the following information on stress and strain, plot a graph in Excel to determine the Young's modulus for an unknown material. The radius of the material is 4 cm.

Cross-sectional area = $A = \pi r^2 = 50.24 \text{ cm}^2$

Initial Length (cm)	Final Length (cm)	Change in Length – ΔL (cm)	Strain (ΔL/L₀)	Mass (g)	Force (N)	Stress (N/cm²)
25	25.2	0.2	0.008	100	980	19.50637
25	25.7	0.7	0.028	200	1960	39.01274
25	26.3	1.3	0.052	300	2940	58.51911
25	26.9	1.9	0.076	400	3920	78.02548

Young's modulus = 8.54 x 10⁶ Pa