Energy Homework Answer Key

1 meter = 10^9 nanometers Helpful Hints: Assume all waves are traveling in a vacuum, unless otherwise noted.

1. List the electromagnetic spectrum from highest to lowest energy.

Gamma rays, x-rays, ultraviolet rays, visible light, infrared, microwaves, radio waves

2. List the electromagnetic spectrum from longest to shortest wavelength.

Radio waves, microwaves, infrared, visible light, ultraviolet rays, x-rays, gamma rays

3. Calculate the frequency of ultraviolet A with a wavelength of 350 nm.

 $c = \lambda v$ so $v = c/\lambda$

First, change 350 nanometers to meters.

350 nm \times 1 meter / 10⁹ nanometers = 3.5 \times 10⁻⁷ meters

 $v = 3.0 \times 10^8$ m/s / 3.5 × 10⁻⁷ meters = 8.6 × 10⁻¹⁴ s⁻¹

4. Calculate the energy, in quanta, of the ray above.

E = hv

 $E= 6.626 \times 10^{-34} \text{ J} \cdot \text{S} \times 8.6 \times 10^{-14} \text{ s}^{-1} = 5.7 \times 10^{-19} \text{ Joules}$

5. Calculate the frequency of a wave traveling with a wavelength of 1.2 meters. What type of ray would this most likely be?

 $c = \lambda v$ so $v = c/\lambda$ $v = 3.00 \times 10^{8} \text{ m/s}$ / 1.2 meters = 2.5 × 10⁸ s⁻¹

radio wave

6. Calculate the energy of a photon traveling with a frequency of 1.0×10^5 s⁻¹.

E = hv

 $E = (6.626 \times 10^{-34} \text{ J} \cdot \text{S}) (1.0 \times 10^5 \text{ s}^{-1}) = 6.6 \times 10^{-29} \text{ Joules}$

M-	h	.
INC	am	e.

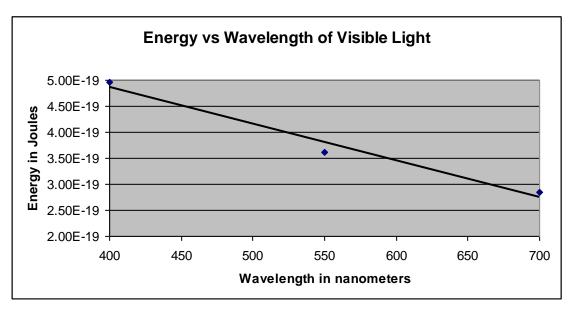
7. Copper absorbs energy with a wavelength of 510 nm. If 2.20×10^4 J of energy is emitted, calculate the number of copper atoms that were present. Assume 1 atom emits 1 quantum. $c = \lambda v$ E = h v

 $v = 3.00 \times 10^8 / 1.5 \times 10^{-7}$ meters = 2.0 × 10⁻¹⁵ 1/s

 $E_{photon} = (2.0 \times 10^{15} \text{ 1/S}) (6.626 \times 10^{-34} \text{ J} \cdot \text{S}) = 1.3 \times 10^{-18} \text{ Joules}$

Since 1 photon emits 1.3×10^{-18} Joules and 1 atom emits 1 photon then:

 2.20×10^4 Joules / 1.3×10^{-18} Joules = 1.7×10^{22} atoms Cu


- 8. In problem 7, how many grams of copper were present? 1.7×10^{22} atoms Cu \times 1 mole Cu/6.022 \times 10 ²³ atoms \times 63.55 g Cu/1 mole Cu
 - = 1.8 grams Cu
- 9. Calculate the frequency of a wave of wavelength 1.50 × 10² centimeters traveling at 80 % of the speed of light in a vacuum?
 c=λν, so ν = c/λ

```
v = (3.00 \times 10^8 \text{ m/s} \times .80) / (.015 \text{ meters}) = 1.6 \times 10^{10} \text{ 1/s}
```

10. Calculate the energy for visible light of wavelength 400 nm, 550 nm and 700 nm. Graph energy vs. wavelength. What can be said about the relationship of energy to wavelength? $c=\lambda v$ E = hv

Energy for 400 nm = 4.97×10^{-19} Energy for 550 nm = 3.61×10^{-19} Energy for 700 nm = 2.84×10^{-19}

Energy increases with decreasing wavelength

