Engineering Design Challenge Packet

Client Statement
Create a “slinger” to be used in an indoor game. The slinger should be made entirely out of the materials provided. The slinger should launch a Ping-Pong ball approximately 20 f into a goal. The slinger should be able to be aimed by the players and be safe for use.

Problem Statement: ____________________________________________
________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________

Function: _______________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________

Objective: ________________________________________________________

Super Slinger Engineering Challenge activity – Engineering Design Challenge Packet
TeachEngineering.org
Super Slinger Engineering Challenge activity — Engineering Design Challenge Packet

Constraints: 

Design Solution (sketch your proposed solution): 

Prototype: 

Super Slinger Engineering Challenge activity — Engineering Design Challenge Packet 2
Test Results

<table>
<thead>
<tr>
<th>Trial</th>
<th>Way Off Target</th>
<th>Off Target</th>
<th>Close</th>
<th>Very Close</th>
<th>Edge of Net</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create a dot plot of your results from the table. What do you notice about your graph?

Evaluation of Results

___________________________________________________________________
___________________________________________________________________
___________________________________________________________________
___________________________________________________________________

Super Slinger Engineering Challenge activity — Engineering Design Challenge Packet