Curricular Unit: Energy

Contributed by: Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

A collection of images showing movement from the Sun and electrons to energy sources (oil, coal, gas, water, wind, solar) to electrical transmission lines in a field, to a pronged electrical plug with electricity coming out of it to a photo of two children enjoying themselves while using headphones and a microphone.
Energy comes in various forms
Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved. (Images put together by ITL Program, University of Colorado Boulder.)


Through nine lessons, students are introduced to a range of energy types — electrical, light, sound and thermal — as well as the renewable energy sources of wind, hydro (water) and solar power. Subjects range from understanding that the movement of energy at the electron level creates electricity that powers our world, to recognizing the Sun as our ultimate energy source. Through numerous hands-on activities, students explore a wide range of scientific topics related to the fundamentals of energy: kinetic and potential energy, light waves, reflection, refraction, convection, sound waves, volume, pitch, frequency, radiation, heat capacity, heat transfer, specific heat. These concepts are presented in the context of engineering applications pertinent to our everyday lives. Other aspects of energy are explored, including energy consumption and conservation, batteries, simple circuits, conduction and insulation, polarization, power grid and blackouts. As they delve into details about wind, water and solar power, students learn about thermometers, anemometers, wind and water turbines (windmills and waterwheels), and even direct solar heating and cooking. See the Unit Overview section for topics by lesson.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

We use energy in all its forms almost every day. In uncountable ways, engineers build upon their scientific knowledge of energy and electricity concepts to provide us with electricity to meet our basic needs of food, shelter, safety, heating and cooling, as well as luxuries of comfort and entertainment. Engineers work with energy and electricity in all its forms, from tiny electrons to nation-spanning electrical grids to the design of everyday appliances.

As we use great amounts of electricity to run our lives, engineers are concerned about the way this energy is produced and its impact on our environment. We are facing many issues with conventional energy sources (fossil fuels, hydropower) that are leading engineers to develop innovative alternative energy sources (wind, solar, biomass, nuclear) and ways to conserve energy (material properties, appliance efficiencies). Yet, no one energy source works for all situations. So engineers design technologies to overcome the inherent disadvantages and obstacles that exist with every energy source.

Engineers apply their understanding of energy principles and behavior to solving real-world problems, resulting in everyday products (cell phones, computer software, electronic music, batteries, radio and television broadcasting, air-land-sea travel, household appliances, sunglasses, cameras, circuitry) as well as specialty technologies and applications (medical diagnostics and treatment, sonar, lasers, solar cells, power plants, transmission lines, the electrical energy grid, HVAC systems, microscopic technologies, weather prediction, space travel). When designing, engineers keep in mind the needs of the application, and optimize characteristics such as power output, ability to recharge, reliability, size, safety, heat generation, length of life cycle, abuse tolerance, cost and ability to be recycled.

More Curriculum Like This

Off the Grid

Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."

High School Lesson
Let the Sun Shine!

Students learn how the sun can be used for energy. They learn about passive solar heating, lighting and cooking, and active solar engineering technologies (such as photovoltaic arrays and concentrating mirrors) that generate electricity.

Elementary Lesson
Passive Solar Design

Students are introduced to passive solar design for buildings — an approach that uses the sun's energy and the surrounding climate to provide natural heating and cooling. They learn about some of the disadvantages of conventional heating and cooling and how engineers incorporate passive solar design...

High School Lesson
Powering the U.S.

This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.

Elementary Lesson

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. (Grades 3 - 5) More Details

    View aligned curriculum

    This Performance Expectation focuses on the following Three Dimensional Learning aspects of NGSS:
    Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
    Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem.Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions.At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs.Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands.
  • Do you agree with this alignment?

  • Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. (Grade 4) More Details

    View aligned curriculum

    This Performance Expectation focuses on the following Three Dimensional Learning aspects of NGSS:
    Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
    Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution.Energy can be moved from place to place by moving objects or through sound, light, or electric currents.Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.Light also transfers energy from place to place.Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.Energy can be transferred in various ways and between objects.
  • Do you agree with this alignment?

  • Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment. (Grade 5) More Details

    View aligned curriculum

    This Performance Expectation focuses on the following Three Dimensional Learning aspects of NGSS:
    Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
    Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth's resources and environments.A system can be described in terms of its components and their interactions.Science findings are limited to questions that can be answered with empirical evidence.
  • Do you agree with this alignment?

  • Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. (Grade 3) More Details

    View aligned curriculum

  • Do you agree with this alignment?

  • Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (Grade 4) More Details

    View aligned curriculum

  • Do you agree with this alignment?

  • Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (Grade 5) More Details

    View aligned curriculum

  • Do you agree with this alignment?

Suggest an alignment not listed above

Unit Overview

Overview of topics by lesson: 1) an introduction to the types and sources of energy, 2) energy consumption and conservation, and renewable vs. nonrenewable energy sources, 3) light energy, including wavelengths, visible spectrum, reflection and refraction, 4) electrical energy, including charge, voltage, current, resistance, circuits, conduction and power plants, 5) sound energy, including sound waves, pitch, volume, frequency and transmission, 6) the nature of thermal energy, temperature and heat capacity, including the difference between conduction, convection and radiation, 7) the advantages and disadvantages of wind as a renewable energy source, 8) the pros and cons of hydropower, and its potential-to-kinetic energy transformation as seen in waterwheels and modern turbines, and 9) passive and active solar energy, including radiation and convection, thermal energy storage capacities and solar ovens.

Unit Schedule

The following schedule provides a suggested order of the lessons and activities. However, you may choose to only teach some of the activities – as your time and priorities permit.


Pre-Unit Test or Quiz: To conduct an overall pre/post content assessment of this curricular unit (nine lessons, with associated activities), administer the attached pre/post test/quiz to the class before beginning any discussion on energy, electricity and renewable energy. Then, after completion of the final lesson, administer the same (now post-unit) test/quiz to the same students and compare pre- to post- scores. In addition, these short exams are suitable to administer to a control group of students who have not completed the unit, to comparatively evaluate the impact of the curricular unit on learning. The attached test and quiz were developed by TE users. One is for fifth-grade students about energy and renewable energy (All About Energy Pre/Post Test-Elementary) and another is for lower elementary-level students about energy, electricity, renewable energy and energy conservation (Energy Pre/Post Quiz-Fifth-Grade).

Post-Unit Test or Quiz: If you administered a pre-unit test or quiz before beginning this curricular unit, conclude the overall pre/post assessment of the unit (nine lessons, with associated activities), by administering the same test or quiz again (now a post-unit test/quiz) to the class after concluding the final lesson and its activity. Compare pre- to post- scores to gauge the impact of the curricular unit on students' learning.

Worksheets and Attachments


See individual lessons and activities.


© 2005 by Regents of the University of Colorado

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder


The contents of this digital library curriculum was developed under grants from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education, and the National Science Foundation (GK-12 grant no. 0338326). However, these contents do not necessarily represent the policies of the U.S. Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: September 25, 2018