Hands-on Activity: Park It!

Contributed by: Integrated Teaching and Learning Program and Laboratory, University of Colorado Boulder

Photo shows a 4-story parking garage made of concrete.
Students learn how architects and engineers work collide
copyright
Copyright © Los Alamos National Laboratory, http://www.lanl.gov/orgs/pa/newsbulletin/images/Garage041204.jpg

Summary

The difference between an architect and an engineer is sometimes confusing because their roles in building design can be similar. Students experience a bit of both professions by following a set of requirements and meeting given constraints as they create a model parking garage. They experience the engineering design process first-hand as they design, build and test their models. They draw a blueprint for their design, select the construction materials and budget their expenditures. They also test their structures for strength and find their maximum loads.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Engineers and architects work together to design structures, and often their responsibilities overlap. Engineers meet both requirements and constraints as they design and build structures.

Pre-Req Knowledge

Students should be able to perform basic measurements in metric units and should be familiar with using dollars in calculations.

Learning Objectives

After this activity, students should be able to:

  • Give examples of architects' and engineers' roles in building design.
  • Explain the difference between a requirement and a constraint.
  • Identify and draw a basic blueprint.

More Curriculum Like This

Architects and Engineers

Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.

Elementary Lesson
Designing Medical Devices for the Ear

Students are introduced to engineering, specifically to biomedical engineering and the engineering design process, through a short lecture and an associated hands-on activity in which they design their own medical devices for retrieving foreign bodies from the ear canal. Through the lesson, they lea...

Straw Towers to the Moon

Students learn about civil engineers and work through each step of the engineering design process in two mini-activities that prepare them for a culminating challenge to design and build the tallest straw tower possible, given limited time and resources. In the culminating challenge (tallest straw t...

Elementary Activity
Design Step 1: Identify the Need

Students practice the initial steps involved in an engineering design challenge. They review the steps of the engineering design loop, discuss the client need for the project, identify a relevant context, define the problem within their design teams, and examine the project's requirements and const...

High School Activity

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (Grade 4) Details... View more aligned curriculum... Do you agree with this alignment?
  • Requirements for a design include such factors as the desired elements and features of a product or system or the limits that are placed on the design. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • Models are used to communicate and test design ideas and processes. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. (Grade 4) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Materials List

For the class as a whole:

  • 100 popsicle sticks
  • 50 pipe cleaners
  • 100 toothpicks
  • 100 straws
  • Package of 3" x 5" index cards
  • 15 sheets of 12" x 12" poster board
  • 15 sheets of 12" x 12" sheets of cardboard
  • 50 sheets of plain (recycled) printer paper
  • 1 roll of cotton string
  • 1 roll of duct tape
  • 1 roll of masking tape
  • 5+ bottles of white glue
  • Several small books to use for testing
  • 8 toy cars (to use as an fun alternative to books, if available)

For each group:

  • 1 12"-in. ruler
  • 1-2 sheets of graph paper for drawing the blueprint
  • 1 copy of the Materials Budget Worksheet
  • 1 pair of scissors

Introduction/Motivation

How do architects begin their designs? As they begin to design a structure, what information do architects need from their customers, or clients? One of the first things is what type of structure they will be designing and constructing. Architects design many different types of structures including houses, apartment buildings, skyscrapers and parking garages. Architects also needs to know how big the structure should be and what it will need to hold — or, what its use will be (people, cars, storage for large/small items, etc.). We call this information, provided by the client, the requirements of the project. Not only do architects need to meet these requirements, but engineers do as well. The architect presents the original design for the project, but the engineer must work with the architect to meet the same requirements that the client expects while at the same time ensuring that the building also meets all safety requirements (or, "meets code"). An example requirement for a parking garage would be a precise number of floors, or exactly how many parking spaces, as requested by the client.

If the client does not give an exact size for the structure, but gives the dimensions of space in which the structure will be built, this is a called a constraint. A constraint is considered a limit that is placed on a design. Think about a skyscraper project — what might be some constraints? For example, a client might provide the architect and engineer with the size of the lot on which the skyscraper is to be built, but not the exact dimensions of the skyscraper. This is considered a constraint because the architect and engineer can choose to make the skyscraper shorter but cannot make it any larger than the ground space available on which to build.

Let's make sure that we understand the difference between a requirement and a constraint. A requirement dictates something that the structure must have, while a constraint is a limit placed on the structure. Can someone give me an example of a requirement? How about a constraint?

Once the architect and engineer are given the requirements and constraints by the client, the architect begins drawing up the design for the structure. The detailed drawings that engineers and architects create have a special name — blueprints. The architect's blueprint has the dimensions of the structure included in the drawing so that the engineer knows the size of the structure and can build it following the architect's specifications (see Figure 1). Once the architect has completed the blueprint, the engineer takes that blueprint and examines the design to determine what materials should be used to best support the weight of the structure.

A model of a house and the accompanying blueprint. Shown are a miniature, 2-story house, sitting on a blueprint, and next to a pencil and architect's ruler.
Figure 1. A model house and its blueprint.
copyright
Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved.

The engineering design process is an important series of steps that an engineer goes through when designing and building any structure. First, the engineer reviews the requirements and constraints for the project with the client and the architect. Secondly, the engineer brainstorms ideas for how to approach the design. Next, the engineer focuses on one idea that is functional, practical and will fulfill all the client's requirements. The engineer must then come up with a detailed design, another blueprint, which includes the dimensions of the structure and materials to be used. Before starting construction the engineer must clear the final design with the client and the architect. Once the engineer gets the go-ahead, construction begins. The final step in engineering is testing the structure. Engineers must always make sure that a building is safe before opening it to the public or turning it over to the client for other use.

For this activity, the client is your teacher, and the desired structure is a parking garage. The requirements are that the parking garage must be able to hold either eight toy cars or one small book and must have a ramp, which will move cars to the top level of the garage.

The constraints are that the height must be at least 10 cm; the parking garage must be under 30 cm in length and 30 cm in width, but longer than 15 cm and wider than 15 cm. The budget, another constraint, for the parking garage is $50. A budget sheet will be provided with the list of available materials and their individual prices. To ensure that you do not run out of money before completing your structure, make sure to only purchase the materials that you know you need! You can always add more materials if your budget allows. We have two days to work on our projects, so take the time to think through your ideas and create a great design!

Vocabulary/Definitions

Blueprint: A detailed design for a house, building or structure; usually to scale.

Constraint: A limit placed on the construction of a building or structure.

Requirement: Something that is required for the construction of a building or structure.

Procedure

Before the Activity

  1. Gather all materials and separate the different materials by their structural purpose:
  • Beams – popsicle sticks, pipe cleaners, toothpicks, straws
  • Concrete – index cards, poster board, cardboard, paper
  • Bond – string, glue, duct tape, masking tape
  1. Print out a Materials Budget Worksheet for each group of students.

With the Students

Day One:

  1. Conduct the Introduction/Motivation section with the students. Present all the materials available for building.
  2. Present the students with the following building requirements and constraints and answer any questions they may have about what they can do in their designs.
  1. Requirements: Parking garage must be able to hold up at least one small book (or 8 toy cars); and must have a ramp going up to the top level.
  2. Constraints: Parking garage must measure between 15 to 30 cm long, and 15 to 30 cm wide; must be greater than 10 cm tall; and must be made for under $50.
  1. Break students up into groups of two and ask them to brainstorm ideas for designing their model parking garage. Have them draw their final design on a piece of graph paper, including the dimensions of their structure (total height, width and length), their names and the date. If desired, have each group choose a name for their "architecture firm" and put it on the graph paper also.
  2. After the student architects have had their drawing approved by the client (the teacher), provide them with the Materials Budget Worksheet. Explain that they are now working as engineers, and must choose which materials to use while staying within their budget of $50. Review with the students how to accurately calculate the total cost of their materials.
  3. Have the engineers indicate on their "blueprint" precisely where each material they chose will be utilized. After they have tallied their materials and their cost on the Materials Budget Worksheet, have them hand in their blueprints for approval by the client (the teacher). The students must have all parts of their blueprints labeled with a material (including glue or tape if used), and all materials needed should be written on the Materials Budget Worksheet.

Day Two:

  1. Return the blueprints to the students. Give students their Materials Budget Worksheet with the materials they "ordered," and subsequently "purchased."
  2. Give students time to construct their parking garage using the materials they have purchased. They can purchase more materials as they build, if they have room left in their budget.
  3. Using the books or toy cars, test the parking garage for strength and have each group determine the maximum load their structure can hold. To determine maximum load, add on small books until the structure collapses. The number of books added prior to the number of books that causes the structure to collapse can be called (for this activity) the maximum load. Have each team record their results on the board.
  4. If some structures do not hold any weight, and the students have money remaining in their budget, they can redesign and reconstruct their structure.
  5. With the students, go over the results of the testing. Determine which model parking garage held the most weight and see if students can evaluate the stronger garages to determine what the "secrets" are to their structure's strength.

A "finished" parking garage, with 4 posts and a corrugated top. In the model, the posts are made of straws and the top is made of two layers of white poster board with a corrugated center.
Figure 2. A "finished" parking garage.
copyright
Copyright © Photograph by Sara Stemler, University of Colorado at Boulder, 2005.

Attachments

Safety Issues

Remind students to use safety when cutting thicker items (popsicle sticks and pipe cleaners) with scissors.

Troubleshooting Tips

To prevent confusion and maintain group consistency, explain to students the idea of a budget and how to calculate the total amount spent.

If students are struggling, encourage them to observe the more successful groups and learn from their designs.

Tell students about cross-bracing — that is, connecting diagonal beams between two legs or from a leg to the top of the garage — as a useful technique that will help the parking garages be more stable and hold more weight.

Assessment

Pre-Activity Assessment

Question/Answer: Ask students questions and have them raise their hands to respond. Write answers on the board.

  • Who participates in the design of a parking garage? (Answer: Architects, and ultimately engineers, do the designing; requirements and constraints are generally set by the client.)
  • Who is responsible for making sure that buildings and structures are safe? (Answer: Engineers)
  • Who is in charge of the aesthetic design of a structure? (Answer: Architects)
  • What are some practical materials that would be used to build a real parking garage? (Possible answers: Cement, concrete, steel, asphalt, rebar, gravel, wire, etc.)
  • What type of client would need a parking garage? (Possible Answers: A town, an airport, a hospital, shopping mall owners, office building owners, etc.)

Activity Embedded Assessment

Requirement vs. Constraint: Ask students to think of a good explanation for the difference between a requirement and a constraint. Ask several students to share their explanations with the class. On the board, write examples in random order of requirements and constraints (see below for ideas). Then, have students identify which are requirements and which are constraints; write their answer next to the example. Discuss with the students how it is possible to exercise creativity within constraints, and discuss their ideas for such creativity.

  • Requirements: The building must be red, the skyscraper must have 27 floors, every room must have three large windows, the house must have a basement, the home must be wheelchair accessible, etc.
  • Constraints: The building must not be blue, the building must be taller than two stories, the building must be shorter than six stories, the house must have more than one bathroom, the kitchen must more than three refrigerators, there must not be a roller coaster in the front yard, etc.

Post-Activity Assessment

Blueprint Sharing: Ask students to share their blueprints with the class, and discuss their approach to meeting the requirements and constraints. Have students share what made creating the blueprint challenging and which parts of designing the blueprint they most enjoyed. If desired, discuss with students how engineers and architects now use computers to create their final blueprints (e.g., using specially-designed CAD — computer aided drawing — software).

Activity Extensions

Have students find the actual cost of a real parking garage and what materials are used.

Have students research a structure that they really like and write a short (one-page) report about the architecture and engineering involved.

As a class, watch a video about a famous building and/or a famous architect and talk about the architecture and engineering involved.

Go on a field trip to a famous building (if there is one nearby) and take a tour!

Ask a local architect to come in and talk with the class about projects they are currently working on. Have them bring in blueprints of their projects to show the students.

Activity Scaling

  • For lower grades, give students a certain set amount of materials for construction rather than using the budget worksheet. Or, simplify the activity by giving the students fewer constraints.
  • For older grades, give students more requirements and/or constraints. One additional requirement could be to add another level (or two) to the parking garage.

References

U.S. Department of Energy, Los Alamos National Laboratory, 2006, http://www.lanl.gov/orgs/pa/newsbulletin/images/Garage041204.jpg

Contributors

Sara Stemler; Melissa Straten; Katherine Beggs; Denali Lander; Abigail Watrous; Janet Yowell

Copyright

© 2006 by Regents of the University of Colorado.

Supporting Program

Integrated Teaching and Learning Program and Laboratory, University of Colorado Boulder

Acknowledgements

The contents of this digital library curriculum were developed under a grant from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education and National Science Foundation GK-12 grant no. 0338326. However, these contents do not necessarily represent the policies of the Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: July 5, 2017

Comments