Curricular Unit: Exploring Solar Power

Contributed by: Techtronics Program, Pratt School of Engineering, Duke University

Photograph of an orange sunset.
Harnessing energy from the sun holds vast applications
Copyright ©


Students explore the methods engineers have devised for harnessing sunlight to generate power. First, they investigate heat transfer and heat storage through the construction, testing and use of a solar oven. With a lesson focused on photovoltaic cells, students learn the concepts of energy conversion, conservation of energy, current and voltage. By constructing model solar powered cars, students see these conceptual ideas manifested in modern technology. Furthermore, the solar car project provides opportunities to explore a number of other topics, such as gear ratios and simple mechanics. Both of these design and construction projects are examples of engineering design.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Designing and building solar cars and solar ovens are examples of engineering projects that demonstrate to students how engineers apply their brains and imaginations to make an impact on the world through innovative designs.

More Curriculum Like This

Let the Sun Shine!

Students learn how the sun can be used for energy. They learn about passive solar heating, lighting and cooking, and active solar engineering technologies (such as photovoltaic arrays and concentrating mirrors) that generate electricity.

Elementary Lesson
Using Heat from the Sun

Students discuss where energy comes from, including sources such as fossil fuels, nuclear and renewable technologies such as solar energy. After this initial exploration, students investigate the three main types of heat transfer: convection, conduction and radiation. Students learn how properties d...

Middle School Lesson
What Is Heat?

Students learn about the definition of heat as a form of energy and how it exists in everyday life. They learn about the three types of heat transfer—conduction, convection and radiation—as well as the connection between heat and insulation.

Middle School Lesson
Off the Grid

Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."

High School Lesson

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Unit Overview

Lesson 1, Using Heat from the Sun and associated activity Cooking with the Sun - Creating a Solar Oven: The three primary modes of energy transfer—conduction, convection and radiation—are discussed in the context of engineers exploiting heat from the sun. Then students create and use solar ovens.

Lesson 2, From Sunlight to Electric Current and associated activity Racing with the Sun - Creating a Solar Car: Students learn how the sun's energy can be used to produce electricity. Then they create and race model solar cars.

Unit Schedule


Roni Prucz; Rahmin Sarabi; Lauren Powell


© 2013 by Regents of the University of Colorado; original © 2004 Duke University

Supporting Program

Techtronics Program, Pratt School of Engineering, Duke University


This content was developed by the MUSIC (Math Understanding through Science Integrated with Curriculum) Program in the Pratt School of Engineering at Duke University under National Science Foundation GK-12 grant no. DGE 0338262. However, these contents do not necessarily represent the policies of the NSF, and you should not assume endorsement by the federal government.

Last modified: June 6, 2017