Hands-on Activity: Renewable Energy Living Lab: Energy Experts

Contributed by: Civil and Environmental Engineering Department, Colorado School of Mines

Photo shows a three-bladed wind turbine with a backdrop of mountains.
A wind turbine along the Colorado front range.
copyright
Copyright © 2012 NREL

Summary

Students use real-world data to evaluate various renewable energy sources and the feasibility of implementing these sources. Working in small groups, students use data from the Renewable Energy Living Lab to describe and understand the way the world works. The data is obtained through observation and experimentation. Using the living lab gives students and teachers the opportunity to practice analyzing data to solve problems or answer questions, in much the same way that scientists and engineers do every day.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Engineers use data to understand problems and evaluate potential solutions. When designing systems to produce or transmit sustainable energy, or power, engineers look at opportunities to harness renewable resources such as wind, sunlight, biofuels (plant materials), geothermal heat and flowing water (dams, currents, tides), which are naturally replenished.

Engineers use both renewable and non-renewable energy sources to generate electricity, power vehicles, and make buildings functional. Renewable sources of energy vary widely in their cost-effectiveness and in their availability. Although water, wind and other renewables may seem free, the cost comes in collecting the energy, transporting it to the where it is needed, and storing it for later use. For example, to utilize energy from water, engineers must design and build dams along with electric generators and transmission lines. The Renewable Energy Living Lab gives students a chance to access the same data that is used by scientists and engineers to evaluate U.S. renewable energy sources.

Pre-Req Knowledge

A basic understanding of map reading and ability to navigate the internet.

Learning Objectives

After this activity, students should be able to:

  • Identify five types of renewable energy.
  • Use the Renewable Energy Living Lab to collect data on various energy forms.
  • Analyze data to make recommendations for where renewable energy projects are best located.
  • Identify the factors contributing to renewable energy feasibility.

More Curriculum Like This

Off the Grid

Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."

High School Lesson
Renewable Energy Living Lab: Exploring Regional Resources

Students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations. Through this activity, students and teachers gain familiarity with the living lab's GIS graphic interfa...

Renewable Energy Living Lab: Energy Priorities

Students analyze real-world data for five types of renewable energy, as found on the online Renewable Energy Living Lab. They identify the best and worst locations for production of each form of renewable energy, and then make recommendations for which type that state should pursue.

Renewable Energy Living Lab: Smart Solar

Students use real-world data to evaluate whether solar power is a viable energy alternative for several cities in different parts of the U.S. Working in small groups, they examine maps and make calculations using NREL/US DOE data from the online Renewable Energy Living Lab.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • The design process is a purposeful method of planning practical solutions to problems. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • The management of waste produced by technological systems is an important societal issue. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Social and cultural priorities and values are reflected in technological devices. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Design is a creative planning process that leads to useful products and systems. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Requirements for design are made up of criteria and constraints. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Energy can be grouped into major forms: thermal, radiant, electrical, mechanical, chemical, nuclear, and others. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • Energy resources can be renewable or nonrenewable. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • Earth's natural resources provide the foundation for human society's physical needs. Many natural resources are nonrenewable on human timescales, while others can be renewed or recycled (Grade 6) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Materials List

Each group needs:

  • computer with internet access (or printed or projected renewable energy potential maps as found on the Renewable Energy Living Lab website)
  • Energy Experts Worksheet, one per student

Introduction/Motivation

Renewable energy is a hot topic in science today. Many people assume that renewable or "green" energy sources are always the best solution. Today we will explore five types of renewable energy resources and determine where in the U.S. are the best locations to convert these resources into electrical energy.

Why do we need to generate electrical energy? We need electrical energy to power our industries, to move from place to place, to grow and cook our food, and to warm or cool our homes.

Currently, most electrical energy is generated by burning fossil fuels, which has significant negative impact on our environment. One potential solution to this is to use renewable energy sources instead.

What is renewable energy? Renewable energy is generated by resource that do not dwindle because of use or overuse. But are all renewable energy resources feasible solutions to generate electrical energy everywhere across the US? This is the question that we will investigate today.

To consider whether a renewable energy source is feasible, what questions would you ask? Here are a few examples:

  • How does it work?
  • How much is there/how much power potential?
  • How much does it cost?
  • What is the environmental impact?
  • Is the resource available in the area where we need it?

We will learn more about renewable energy potential sources using the Renewable Energy Living Lab in the next few class periods. We will look at real-world data acquired from the Department of Energy National Laboratories.

Vocabulary/Definitions

biomass: Biological (organic) material from living or dead organisms (especially plants) used as an energy source. Biomass used for electricity generation varies widely by region. Examples: Forest and wild plant growth (trees, branches, stumps), industrial wastes (such as from lumber and paper mills), urban waste (park trimmings, yard clippings, municipal solid waste, animal matter, sewage, food scraps), agricultural residues and fuel crops (corn, sugarcane, bamboo, hemp, wheat, straw, rice husks, grasses, algae, seaweed, animal fats, vegetable oils), etc.

fossil fuel: A type of fuel formed by the decay and decomposition process of dead organisms buried in the Earth for millions of years. Examples: Petroleum, natural gas, coal.

geothermal energy: Thermal (heat) energy from heat present under the Earth's surface.

hydropower: Power created from the movement (falling) of water. Dams are often used to create hydropower that can be converted to electricity.

renewable energy: Energy obtained from natural resources that are continually replenished, for example, regardless of how much of the Sun's heat energy is "used" today, more is received by the Earth tomorrow. Examples: Sunlight (solar energy), water (hydropower), geothermal, biomass.

wind turbine: A device similar to a windmill that moves with the wind to convert the kinetic energy created by the wind to mechanical energy. This mechanical energy can be converted to electrical energy as well.

Procedure

  1. Provide students with background for the activity: Today you will explore five forms of renewable energy and determine where in the U.S. are the best locations to use this energy. However, you must work within some constraints, as in real life. To solve this problem, we'll use real-world data hosted on a website called "a living lab."
  2. Pair students to work together. Small groups work best so each student has a chance to explore the data. Give each group an Energy Experts Worksheet as an activity guide.
  3. Navigate students to the Renewable Energy Living Lab:

Go to http://www.teachengineering.org/livinglabs/renewable_energy/ and click to enter the Renewable Energy Living Lab.

Review the five energy icons, and discuss why each is appropriate for its energy type. As an introduction to renewable energy, review the descriptive paragraphs about each energy source on the page. Visit the "How It Works" link to explore the engineering involved.

Wind is kinetic energy—a mass of air moving with speed. The Sun unevenly heats the Earth's surface throughout the day. The air above the land heats up more quickly than the air over the water. The warm air expands and rises, and the cooler air rushes in to take its place, creating wind. This wind energy (or power) is harnessed using wind turbines. The wind rotates the turbine blades and turns a generator to produce electricity.
A brief description of wind energy, as found on the Renewable Energy Living Lab introduction page. Note the "How It Works" hot link.
copyright
Copyright © 2012 Renewable Energy Living Lab, Colorado School of Mines

  • Choose age group K-12.
    Screen capture shows two rectangles marked: K-12 (blue) and resources (orange).
    Navigation buttons to access K-12 data, or teacher resources.
    copyright
    Copyright © 2012 Renewable Energy Living Lab, Colorado School of Mines
  • Zoom in on your state.
    Image of upper right area of Renewable Energy Living Lab map with icons for zooming and panning.
    Zoom and pan tools.
    copyright
    Copyright © 2016 Renewable Energy Living Lab, Colorado School of Mines
  • Check the boxes under the Resources folder (located on the left under the Data Layers tab) to switch between the maps depicting the potential for the five different forms of renewable hydropower, biomass, geothermal, wind and solar. Use the icons in the lower left corner to read more information about each form of energy.
    A map of the US showing biomass, geothermal, hydro, solar and wind energy.
    Resources folder to check the boxes for the different forms of energy.
    copyright
    Copyright © 2016 Renewable Energy Living Lab, Colorado School of Mines
  1. Give students time to explore the living lab before they begin to analyze data. Point out the legend under the Legend tab. Point out the various units and color keys. Point out hot links at the bottom of the legend box for additional resources about each energy type.
    Screen capture image shows solar power and wind power map legend found by clicking on the Legend tab beside the Data Layers tab.
    Renewable Energy Living Lab screen shot showing legend.
    copyright
    Copyright © 2016 Renewable Energy Living Lab, Colorado School of Mines
  2. Review the worksheet with the class by reading it aloud. Before they dive into the data, ask students to think about what types of information they will need in order to solve this problem. Direct students to discuss their ideas with their partners.
  3. Direct students to study the maps to find areas with high potential to develop solar, geothermal, wind, hydro and biomass energy. Note: Wind speed (m/s) is given on the map as opposed to wind power density. In order to obtain the power density (W/m2), students should use Table 1-1 Classes of Wind Power Density to determine the wind power density in W/m2 based off the wind speed (m/s) that they find on the map. This table is also given under the Wind Speed Offshore icon in the lower left corner. Students should use the column on the right to determine the wind power density at 50 m. It is not necessary for this activity to obtain the power density, however if students wish to use that for their analysis in addition to the wind speed, they may do so.
  4. Guide students to review the engineering criteria as they go through the worksheet exercise. These include:
  • Sites must have a high potential for generating electrical energy from a renewable source.
  • Sites should be within a reasonable driving distance, 200 miles, of an international airport.
  • No more than two sites may be located within the same state.
  • Identify three sites for each renewable energy plant: solar energy, geothermal energy, wind energy, hydropower and biomass energy.
  1. After the worksheet is completed, come together as a class to present solutions and discuss.

Attachments

Assessment

Pre-Activity Assessment

Energy Experts Engage: After students complete the ENGAGE section on the Energy Experts Worksheet, a written brainstorming opportunity, have them share with a partner so all voices are heard in the room. Then lead a class discussion to review possible answers and ideas for the prompts.

Activity Embedded Assessment

Energy Experts, Explore and Explain: While students access data and evaluate maps, verify understanding through questioning and monitoring of student work. As students navigate the website, walk around to observe their data. Ask them about units of measure and geographic trends.

Worksheet: As students explore the website, have them complete the data table and questions on the worksheet. Review their answers to gauge their understanding of the data.

Post-Activity Assessment

Energy Experts Elaborate and Evaluate: After students complete the ELABORATE questions on the worksheet, have them share their answers with the class. Point out similarities and differences within their solutions/difficulties.

As part of the EVALUATE portion of the worksheet, pair up partner groups to make groups of four students each. Provide each pair of partners with an opportunity to present their solutions to another group. Then, give students time to process what they learned by sharing solutions. Lead a class discussion to have students compare results. Alternately, have students present their solutions to the entire class and then complete the analysis questions.

Activity Scaling

  • For upper grades, have students explore the other resources as well as utilize different reference data.

Additional Multimedia Support

Teacher resources: http://www.teachengineering.org/livinglabs/renewable_energy/educators.php

Other Related Information

This activity is designed around the Renewable Energy Living Lab, a resource of current and real-world scientific data, in this case a culmination of available renewable energy data from across the U.S. The data is available in a database with a graphical interface using a scaling map for viewing of regions as large as the continental U.S. and as small as a town. It is rare that students have access to query such as extensive body of scientific data to support their own inquiry-based questions. Additional background information is provided in the living lab interface including source information used to compile the data.

Contributors

Mike Mooney; Minal Parekh; Jessica Noffsinger; Karen Johnson; Jonathan Knudtsen

Copyright

© 2013 by Regents of the University of Colorado; original © 2012 Colorado School of Mines

Supporting Program

Civil and Environmental Engineering Department, Colorado School of Mines

Acknowledgements

This curriculum was created with the support of National Science Foundation grant no. DUE 0532684. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: August 13, 2018

Comments