Unit Exploring Energy

A person in an orange jacket, with a bungee cord attached to his ankles jumps off a platform headfirst into a gorge with a river at its base.
Bungee jumping is a great example of energy transfer
copyright
Copyright © NOAA https://www.climate.gov/teaching/professional-development/bungy-jumping-ice-core-roller-coaster-ice-core-records-global

Summary

Students make sense of energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through science and engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.
This engineering curriculum aligns to Next Generation Science Standards (NGSS).

Engineering Connection

The fundamental concept of energy is important across all fields of engineering. So many engineered systems, from simple levers and light bulbs to sophisticated machines like jet airplanes, work by transferring energy from one form or object to another. Thus, a firm understanding of energy is essential for everyday technical literacy as well as the study of more advanced concepts in engineering.

Unit Overview

Lesson 1 introduces students to a definition of energy and the concepts of kinetic energy, potential energy and energy transfer. The subsequent lessons provide more in depth information about these concepts. Students get the chance to practice design with respect to design criteria during the associated activity by modifying, testing and redesigning "spool racers" powered by twisted rubber bands.

Lesson 2 focuses on kinetic and potential energy, explaining kinetic energy's dependence on velocity and mass, as well as the many forms in which potential energy can be stored: chemical, gravitational, elastic, thermal energy. During the associated activity, a classroom demonstration models asteroids hitting the moon's surface by dropping a weighted plastic egg into a tray of flour from different heights. Students experiment with different masses and heights, learn about the PE and KE equations, make predictions, and collect and graph data from their measurements of the impact crater sizes.

Lesson 3 explores the ways that energy can be transferred from one form, place or object to another. Two common real-world engineered systems, lightbulbs and car engines, are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. In the associated activity, students take the well-loved Mentos® fountain potential-to-kinetic energy transfer demonstration up a notch. The class is challenged to optimize the design of the basic soda/candy geyser made by the teacher. Three research teams investigate different variables and combine their results into a (hopefully) superior design to face-off in a final competition to see which fountain blasts highest.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

See individual lessons and activities for standards alignment.

Subscribe

Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!
PS: We do not share personal information or emails with anyone.

Unit Schedule

The six one-hour lessons and activities may take more or less time, depending on the teaching style, depth of instruction and level of students. The suggested order to conduct them is:

More Curriculum Like This

Upper Elementary Lesson
Exploring Energy: Energy Conversion

Students learn more about the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world ...

Upper Elementary Lesson
Exploring Energy: Kinetic and Potential

Students makes sense of kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers.

Copyright

© 2014 by Regents of the University of Colorado; original © 2013 University of California Davis

Contributors

Eric Anderson, Jeff Kessler, Irene Zhao

Supporting Program

RESOURCE GK-12 Program, College of Engineering, University of California Davis

Acknowledgements

The contents of this digital library curriculum were developed by the Renewable Energy Systems Opportunity for Unified Research Collaboration and Education (RESOURCE) project in the College of Engineering under National Science Foundation GK-12 grant no. DGE 0948021. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: May 5, 2021

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org