Curricular Unit: What Is a Computer Program?

Contributed by: GK-12 Program, Computational Neurobiology Center, College of Engineering, University of Missouri

A screen capture image shows a series of symbols and icons representing a LEGO NXT robot program. A photograph of a girl sitting cross-legged with a laptop and both hands raised in victory.
Students explore the logic behind programming
copyright
Copyright © (left) GK-12 Program, Computational Neurobiology Center, College of Engineering, University of Missouri; (right) 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved. http://office.microsoft.com/en-us/images/results.aspx?qu=computer&ex=1#ai:MP900448599|

Summary

Through four lesson and four activities, students are introduced to the logic behind programming. Starting with very basic commands, they develop programming skills while they create and test programs using LEGO® MINDSTORMS® robots. Students apply new programming tools—move blocks, wait blocks, loops and switches—in order to better navigate robots through mazes. Through programming challenges, they become familiar with the steps of the engineering design process. The unit is designed to be motivational for student learning, so they view programming as a fun activity. This unit is the third in a series. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

We interact with computers and their programs in uncountable ways during our everyday lives. Engineers in all fields use and design computer programs to perform calculations, run simulations, program machines and much more. When you turn on any computer, a program called the "operating system" runs and lets you access the various computer and software features. The computers, tablets and phones that students use contain all sorts of programs and "apps," and it is important for them to understand that people have created them. As computers are increasingly used to tackle all types of problems, learning how to program becomes an essential skill for most engineers—and everyone!

More Curriculum Like This

How Do You Make Loops and Switches?

Students learn how to program using loops and switches. Using the LEGO® MINDSTORMS® robots, sensors and software, student pairs perform three mini programming activities using loops and switches individually, and then combined.

Robot Design Challenges

Through the two lessons and five activities in this unit, students' knowledge of sensors and motors is integrated with programming logic as they perform complex tasks using LEGO® MINDSTORMS® robots and software. Through these design challenges, students become familiar with the steps of the engineer...

Elementary Unit
How Does a Robot Work?

This lesson introduces electricity, batteries and motors using a LEGO® MINDSTORMS robot. The associated activity guides students to build a simple LEGO set-up and see the practical implementation of the concepts discussed.

Elementary Lesson
How Does a Sound Sensor Work?

Students learn about how sound sensors work, reinforcing their similarities to the human sense of hearing. They look at the hearing process—sound waves converted to electrical signals sent to the brain—through human ear anatomy as well as sound sensors.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Various relationships exist between technology and other fields of study. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • The design process is a purposeful method of planning practical solutions to problems. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • Test and evaluate the solutions for the design problem. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • The processing of information through the use of technology can be used to help humans make decisions and solve problems. (Grades 3 - 5) Details... View more aligned curriculum... Do you agree with this alignment?
  • New products and systems can be developed to solve problems or to help do things that could not be done without the help of technology. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Specify criteria and constraints for the design. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Describe how new technologies have helped scientists make better observations and measurements for investigations (e.g., telescopes, electronic balances, electronic microscopes, x-ray technology, computers, ultrasounds, computer probes such as thermometers) (Grade 5) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Unit Overview

This unit is composed of four lesson/activity pairs designed to introduce students to programming skills using LEGO MINDSTORMS NXT robots by having them learn and develop programs to control taskbot movements. The unit is the third in a series and follows Humans Are Like Robots (unit 1) and Our Bodies Have Computers and Sensors (unit 2).

Students first gain an understanding of algorithms. Then they are introduced to programming via quick programming using the LEGO intelligent brick (computer). Then they move on to program with move blocks using the LEGO software on a computer. Next, they learn about conditional commands and how to program using sound and touch sensors rather than by specifying exact durations. Eventually, they program LEGO robots using combinations of move blocks, wait blocks, loops and switches. In the final activity, students use Android phones with Bluetooth wireless connections to remotely guide their LEGO robots through a maze.

To help convey the concepts, students occasionally act out maze demos. Students also learn about electrical connections, both wired and wireless, and their pervasiveness in our world. They follow the Morse code rules in order translate a few phrases into Morse code while learning that it is a communication method that takes advantage of on/off states to transmit messages by electrical bursts.

Through assorted programming challenges, students become familiar with the steps of the engineering design process, especially gaining experience with iteration in order to achieve successful programs. While performing fun activities with the NXT robots, students may not realize that they have learned computer programming in the process. The activities open students' eyes to how similar logic programs are incorporated into the many everyday devices we use.

Throughout this unit, each group of (2-4) students requires all or portions of the following items:

Unit Schedule

Each lesson and activity is designed to take one or two 50-minute session, for a total of eleven 50-minute sessions for the unit. See Table 1 for the suggested order to conduct the lesson/activity sets.

A three-column table with rows numbered 1 through 4. Text contents by row: Lesson 1: What Is a Program? > Activity 1: Navigating a Maze; Lesson 2: How Do You Make a Program Wait? > Activity 2: Wait Program!; Lesson 3: How Do You Make Loops and Switches? > Activity 3: Using Waits, Loops and Switches; Lesson 4: What Is Bluetooth? > Activity 4: Remote Control Using Bluetooth.
Table 1. The suggested order to conduct the unit's lesson/activity sets.

Other Related Information

Show students the inspirational Code.org video titled, "What Most Schools Don't Teach," (5:43-minutes) to learn about a new "superpower" that isn't being taught in 90% of U.S. schools (computer programming!), starring Bill Gates, Mark Zuckerberg, will.i.am, and many other software development and technology leaders. https://www.youtube.com/watch?v=nKIu9yen5nc

Quotations from the short film include: "Everybody in this country should learn how to program a computer because it teaches you how to think," "we all depend on technology... and yet none of us know how to read and write code!" "software is really about humanity—it's about helping people by using computer technology," "great coders are today's rock stars," "the programmers of tomorrow are the wizards of the future — you're gonna look like you have magic powers compared to everybody else," and "it's the closest thing we have to a superpower."

Contributors

Riaz Helfer, Sachin Nair, Pranit Samarth, Satish S. Nair

Copyright

© 2014 by Regents of the University of Colorado; original © 2013 Curators of the University of Missouri

Supporting Program

GK-12 Program, Computational Neurobiology Center, College of Engineering, University of Missouri

Acknowledgements

This curriculum was developed under National Science Foundation GK-12 grant no. DGE 0440524. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: June 6, 2017

Comments