Curricular Unit: Engineering Nature: DNA Visualization and Manipulation

Contributed by: National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs, University of Houston

A grainy black and white image of a DNA strand.
Electron micrograph of a DNA sample.
copyright
Copyright © 2012 University of California Los Angeles http://www.biolchem.ucla.edu/Resources_Electron_Microscopy_Laboratory_Images.htm

Summary

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Engineering Connection

Visualization of small structures such as the molecular structures of complex proteins and genetic material (DNA) is possible due to engineering discoveries and breakthroughs in physics at small scales. Imaging technologies such as x-ray and scanning electron microscopy—used by scientists and engineers to image microscopic structures—are also used by biomedical engineers and biologists to study biomolecules, cells and tissue samples. Microfluidics concepts and devices used to study colloidal particle flow are also employed by biologists to study and filter biomolecules. Gel electrophoresis is one example engineering application that is used by biologists to compare fragments of DNA samples.

More Curriculum Like This

Imaging DNA Structure

Students are introduced to the latest imaging methods used to visualize molecular structures and the method of electrophoresis that is used to identify and compare genetic code (DNA). Students should already have basic knowledge of genetics, DNA (DNA structure, nucleotide bases), proteins and enzyme...

High School Lesson
Inside the DNA

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification.

High School Activity
Restriction Enzymes and DNA Fingerprinting

Students focus on restriction enzymes and their applications to DNA analysis and DNA fingerprinting. They use this lesson and its associated activity in conjunction with biology lessons on DNA analysis and DNA replication.

DNA Forensics and Color Pigments

Students perform DNA forensics using food coloring to enhance their understanding of DNA fingerprinting, restriction enzymes, genotyping and DNA gel electrophoresis.

High School Activity

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • The sciences of biochemistry and molecular biology have made it possible to manipulate the genetic information found in living creatures. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • Technological progress promotes the advancement of science and mathematics. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • know that hypotheses are tentative and testable statements that must be capable of being supported or not supported by observational evidence. Hypotheses of durable explanatory power which have been tested over a wide variety of conditions are incorporated into theories; (Grades 9 - 11) Details... View more aligned curriculum... Do you agree with this alignment?
  • know scientific theories are based on natural and physical phenomena and are capable of being tested by multiple independent researchers. Unlike hypotheses, scientific theories are well-established and highly-reliable explanations, but they may be subject to change as new areas of science and new technologies are developed; (Grades 9 - 11) Details... View more aligned curriculum... Do you agree with this alignment?
  • distinguish between scientific hypotheses and scientific theories; (Grades 9 - 11) Details... View more aligned curriculum... Do you agree with this alignment?
  • plan and implement descriptive, comparative, and experimental investigations, including asking questions, formulating testable hypotheses, and selecting equipment and technology; (Grades 9 - 11) Details... View more aligned curriculum... Do you agree with this alignment?
  • analyze the levels of organization in biological systems and relate the levels to each other and to the whole system. (Grades 9 - 11) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Unit Overview

This unit presents technologies used to visualize the complex structures of biomolecules such as DNA and proteins, as well as DNA fingerprinting by gel electrophoresis, a DNA analysis technique used in forensic studies.

In the first lesson, "Imaging DNA Structure," students are introduced to imaging methods in current use and the challenges faced by biologists and biomedical engineers when trying to understand biomolecule structures. In the associated activity, students research specific imaging technologies with applications in biology and present their findings.

In the second lesson, "Restriction Enzymes and DNA Fingerprinting," students learn about electrophoresis applications for DNA fingerprinting. The associated hands-on activity illustrates the concept of electrophoresis and DNA fingerprinting.

Unit Schedule

Contributors

Mircea Ionescu; Myla Van Duyn

Copyright

© 2013 by Regents of the University of Colorado; original © 2012 University of Houston

Supporting Program

National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs, University of Houston

Acknowledgements

This digital library content was developed by the University of Houston's College of Engineering under National Science Foundation GK-12 grant number DGE-0840889. However, these contents do not necessarily represent the policies of the NSF and you should not assume endorsement by the federal government.

Comments