Curricular Unit: Energy-Efficient Housing

Contributed by: Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

A photograph shows the Nottingham HOUSE (home optimising the use of solar energy) built as part of the Solar Decathlon 2010 event--a cube-shaped structure.
Students learn about designing energy-efficient smart housing that is environmentally friendly
copyright
Copyright © 2011 Robshipman, Wikipedia https://en.wikipedia.org/wiki/Creative_Energy_Homes#/media/File:CEH_Nottingham_House.jpg

Summary

We all know that it takes energy to provide us with the basics of shelter: heating, cooling, lighting, electricity, sanitation and cooking. To create energy-efficient housing that is practical for people to use every day requires combining many smaller systems that each perform a function well, and making smart decisions about the sources of power we use. Through five lessons on the topics of heat transfer, circuits, daylighting, electricity from renewable energy sources, and passive solar design, students learn about the science, math and engineering that go into designing energy-efficient components of smart housing that is environmentally friendly. Through numerous design/build/analyze activities, students create a solar water heater, swamp cooler, thermostat, model houses for testing, model greenhouse, and wind and water turbine prototypes. It is best if students are concurrently taking Algebra 1 in order to complete some of the worksheets.

Engineering Connection

Engineers are the creative people who are always coming up with ingenious and better ways to provide us with reliable and energy-efficient shelter. Energy-efficiency means performing some task so it uses the least amount of energy possible. Using energy wisely might involve conserving and minimizing the initial energy required to create an engineered product or system, and/or designing its ongoing energy use to be as minimal as possible and/or use renewable energy sources. Engineers design energy-efficient technologies for buildings, homes, transportation, power systems and industry to reduce consumption and expense of our energy resources.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

Suggest an alignment not listed above

Unit Overview

Overview of topics by lesson: 1) heat transfer, especially solar water heaters and swamp coolers, 2) electrical circuits, including designing a thermostat, 3) lighting, especially daylighting and greenhouses, 4) renewable and non-renewable energy sources, especially water and wind power, and 5) passive solar design, especially for heating.

Unit Schedule

Contributors

See individual lessons and activities.

Copyright

© 2007 by Regents of the University of Colorado

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Acknowledgements

This digital library content was developed by the Integrated Teaching and Learning Program under National Science Foundation GK-12 grant no. 0338326, and the Discovery-Learning Apprentice Program at CU-Boulder's College of Engineering and Applied Science. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Comments