Hands-on Activity: Energy Systems

Contributed by: Office of Educational Partnerships, Clarkson University, Potsdam, NY

Photo shows an ear of dried yellow corn on the cob and a beaker of clear liquid with a backdrop of an industrial plant with smokestacks.
Corn-based ethanol is a biofuel that could ultimately help supply U.S. transportation fuel needs.
copyright
Copyright © U.S. Department of Energy https://www.eere-pmc.energy.gov/PMC_News/EERE_Program_News_3-08.aspx

Summary

Posters are provided for several different energy conversion systems. Students are provided with cards that give the name and a description of each of the components in an energy system. They match these with the figures on the diagram. Since the groups look at different systems, they also describe their results to the class to share their knowledge.

Engineering Connection

Energy "systems" developed by engineers are comprised of numerous components that work together to get the energy content of the energy resource converted into a form that is useful to the user and delivered to the customer. All of the components in the system must be carefully designed to work together effectively.

Learning Objectives

After this activity, students should be able to identify and describe the parts of an energy system as well as identify their respective environmental impacts.

More Curriculum Like This

Powering the U.S.

This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.

Elementary Lesson
Off the Grid

Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."

High School Lesson
Renewable Energy Design: Wind Turbines

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques t...

Hydrogen-Oxygen Reaction Lab

This lab exercise exposes students to a potentially new alternative energy source—hydrogen gas. Student teams are given a hydrogen generator and an oxygen generator. They balance the chemical equation for the combustion of hydrogen gas in the presence of oxygen. Then they analyze what the equation r...

High School Activity

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. (Grades 6 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Electrical circuits provide a means of transferring electrical energy when heat, light, sound, and chemical changes are produced. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • In most chemical and nuclear reactions, energy is transferred into or out of a system. Heat, light, mechanical motion, or electricity might all be involved in such transfers. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Natural hazards can present personal and societal challenges because misidentifying the change or incorrectly estimating the rate and scale of change may result in either too little attention and significant human costs or too much cost for unneeded preventive measures. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Important personal and social decisions are made based on perceptions of benefits and risks. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development. (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • 4. Energy exists in many forms, and when these forms change energy is conserved. (Grades K - 8) Details... View more aligned curriculum... Do you agree with this alignment?
  • PERFORMANCE INDICATOR 4.1
    describe the sources and identify the transformations of energy observed in everyday life (Grades 5 - 8) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Materials List

Each group needs:

Introduction/Motivation

We just learned about energy sources. The systems you looked at were generally one component of an overall energy system that is comprised of many components.

  • Go over the system diagram for one of the systems the class will not be doing. (For example, reviewing coal combustion relating to the sterno/pinwheel combustion demo would be appropriate; see lesson 4.)
  • Indicate that the real-life energy system also includes coal mining and transportation and the electricity distribution grid to get the energy from its real source (coal in the ground) into electricity to power your TV.
  • Instruct the class to keep in mind the environmental impacts of their respective energy source/system during the course of the activity.

Procedure

Before class:

  • Print and cut apart system cards.
  • Print system diagram posters (large poster size format is best) and post around the room. (we laminate them for repeated use in different classes and years)
  • Make copies of the worksheet.
  • Print and cut apart the Energy Systems Environmental Impacts sheet.

With the students:

1. Energy System Diagram Activity

  • Explain that the students will have to match the system component and its description with its location on the diagram they are given.
  • They will also have to draw a block diagram for their system, identifying the starting and ending form and state for each system component.
  • Divide the class into groups of three students each.
  • In most classes, we only used the wind, solar, and hydro diagrams, but other diagrams can also be used.
  • Go around and assist each group as needed.
  • Once all students have figured out their diagrams, have each group present it to the class.They can do the block diagram on the board. Have each group briefly discuss the environmental impacts of their system to the class.
  • (optional) Pass out the completed handouts for each system.

2. Close with overall assessment of what an energy system is and its general attributes (input, output, conversion process, efficiency).

3. Discuss again how this overall lesson on sources can be used for the unit project.

Attachments

Assessment

Presentations: Have students present their posters to the class and describe the system components, functions and environmental impacts.

Worksheets: Have students turn in their completed worksheets with block flow diagrams showing the energy forms and conversions for each component.

References

"Environmental Impact by Energy Source." Energy4me RSS. N.p., n.d. Web. 13 Aug. 2014. http://www.energy4me.org/energy-facts/environmental-protection/environmental-impact-by-source/.

Energy Information Administration, EIA Kid's Page – Energy Facts. US Department of Energy. Accessed December 29, 2008. http://www.eia.doe.gov/kids/energyfacts/index.html

Other Related Information

This activity was originally published by the Clarkson University K-12 Project Based Learning Partnership Program and may be accessed at http://www.clarkson.edu/highschool/k12/project/energysystems.html.

Contributors

Susan Powers; Jan DeWaters; and a number of Clarkson and St. Lawrence University students in the K-12 Project Based Learning Partnership Program

Copyright

© 2013 by Regents of the University of Colorado; original © 2008 Clarkson University

Supporting Program

Office of Educational Partnerships, Clarkson University, Potsdam, NY

Acknowledgements

This activity was developed under National Science Foundation grant nos. DUE 0428127 and DGE 0338216. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: May 10, 2017

Comments