Curricular Unit: Up, Up and Away! - Airplanes

Contributed by: Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Quick Look

Grade Level: 5 (4-6)

Choose From: 10 lessons and 12 activities

Subject Areas: Physical Science

Two photographs of airplanes: Charles Lindbergh's first airplane in flight, circa 1927. A modern-day Boeing 747.
Students investigate airplanes and the science behind their movement
copyright
Copyright © Library of Congress; NASA Quest http://www.americaslibrary.gov/jb/jazz/jb_jazz_lindbergh_2_e.html http://quest.nasa.gov/aero/background/

Summary

The airplanes unit begins with a lesson on how airplanes create lift, which involves a discussion of air pressure and how wings use Bernoulli's principle to change air pressure. Next, students explore the other three forces acting on airplanes—thrust, weight and drag. Following these lessons, students learn how airplanes are controlled and use paper airplanes to demonstrate these principles. The final lessons addresses societal and technological impacts that airplanes have had on our world. Students learn about different kinds of airplanes and then design and build their own balsa wood airplanes based on what they have learned.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

In designing airplanes, trains, cars, rockets and bicycles—nearly everything that moves through the air—engineers must understand Bernoulli's principle. The forces caused by moving air enable airplanes to fly and trains to slow. Engineers take advantage of the nature of air pressure so their designs of these and many other applications, function correctly, efficiently and safely. Engineers manipulate air pressure to create lift; they design wings so that the air moves faster over the top than under them, causing aircraft to lift during takeoff and during flight.

Weight is another important aspect of aircraft design that engineers take into consideration. Every additional part or piece on an airplane adds weight that makes it harder for it to overcome the force of gravity. So, when engineers design airplanes, they minimize weight when choosing materials and parts, while still assuring strength and safety. Engineers also design systems that create an action called thrust (utilizing Newton's third law of motion). To create thrust, engineers may use propellers, jets or rockets; the heavier the airplane, the more thrust required to move it.

When designing airplanes, engineers also keep in mind the force of drag and the principle of energy conservation. Since drag slows down airplanes and makes them less efficient, the goal is to design planes that reduce drag. The process of iterative design helps engineers learn from the mistakes of previous designs. Engineers often build small-scale aircraft models to test how they fly, avoiding the expense of testing at full-size, and they experiment with many different designs to find the best one. Engineers also use computer models to test aspects of their designs before they build the real thing; this is less expensive, easier and quicker since they can learn from the mistakes on the small-size, inexpensive models.

Engineers take into consideration the purpose of the airplane when they design it. Over the years, engineers have advanced the design of airplanes so they are more sophisticated and specialized. Engineers also design aircraft support systems and structures, such as runways, airports and support vehicles.

When designing new airplanes, engineers follow the steps of the engineering design process, and use invention techniques such as brainstorming, to come up with new ideas. Since engineers almost always work in teams, the ability to work together to come up with ideas and solutions is important. Engineers share their thoughts and build upon each others' ideas to come up with creative design solutions.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

NGSS Performance Expectation

Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Alignment agreement:

Science knowledge is based upon logical and conceptual connections between evidence and explanations.

Alignment agreement:

The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion.

Alignment agreement:

All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared.

Alignment agreement:

Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales.

Alignment agreement:

View other curriculum aligned to this performance expectation
NGSS Performance Expectation

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.

Alignment agreement:

The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions.

Alignment agreement:

All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

Alignment agreement:

The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Alignment agreement:

View other curriculum aligned to this performance expectation
NGSS Performance Expectation

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

Alignment agreement:

Models of all kinds are important for testing solutions.

Alignment agreement:

The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.

Alignment agreement:

View other curriculum aligned to this performance expectation
NGSS Performance Expectation

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

Alignment agreement:

There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.

Alignment agreement:

View other curriculum aligned to this performance expectation
  • Fluently divide multi-digit numbers using the standard algorithm. (Grade 6 ) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (Grade 6 ) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (Grade 6 ) More Details

    View aligned curriculum

    Do you agree with this alignment?

Suggest an alignment not listed above

More Curriculum Like This

Using Thrust, Weight & Control: Rocket Me into Space

Through the continuing storyline of the Rockets unit, this lesson looks more closely at Spaceman Rohan, Spacewoman Tess, their daughter Maya, and their challenges with getting to space, setting up satellites, and exploring uncharted waters via a canoe. Students are introduced to the ideas of thrust,...

May the Force Be with You: Lift

Students revisit Bernoulli's principle (presented in lesson 1 of the Airplanes unit) and learn how engineers use this principle to design airplane wings. Airplane wings create lift by changing the pressure of the air around them. This is the first of four lessons exploring the four key forces in fli...

Middle School Lesson
May the Force Be with You: Thrust

Students study how propellers and jet turbines generate thrust. This lesson focuses on Isaac Newton's third law of motion for every action there is an equal and opposite reaction.

Can You Take the Pressure?

Students are introduced to the concept of air pressure. They explore how air pressure creates force on an object. They study the relationship between air pressure and the velocity of moving air.

Middle School Lesson

Unit Schedule

The following schedule provides a suggested order of the lessons and activities. However, you may choose to only teach some of the activities – as your time and priorities permit.

Copyright

© 2009 by Regents of the University of Colorado

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Acknowledgements

The contents of this digital library curriculum were developed under grants from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education and the National Science Foundation (GK-12 grant no. 0338326). However, these contents do not necessarily represent the policies of the Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: April 17, 2019

Comments

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org