Unit Photovoltaic Efficiency

Sunlight reflects off sheets of shiny dark blue photovoltaic panels covering a rooftop.
Photovoltaic (PV) solar panels and their efficency is explored
copyright
Copyright © (photo) 2008 Sean Hauze. Used with permission. (sun clipart) Copyright © 2004 Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. All rights reserved.

Summary

Through a series of four lessons, students are introduced to many factors that affect the power output of photovoltaic (PV) solar panels. Factors such as the angle of the sun, panel temperature, specific circuit characteristics, and reflected radiation determine the efficiency of solar panels. These four lessons are paired with hands-on activities in which students design, build and test small photovoltaic systems. Students collect their own data, and examine different variables to determine their effects on the efficiency of PV panels to generate electrical power.
This engineering curriculum aligns to Next Generation Science Standards (NGSS).

Engineering Connection

To design a long-lasting, safe and efficient photovoltaic system, engineers take into account many factors that affect power generation. Trade-offs are involved in every efficiency measure, and the best designs accommodate specific environmental and economic conditions. To design optimal PV systems, engineers account for all these factors and how they interact.

Unit Overview

In lesson 1, students study the solar angles involved in maximizing PV power generation. In lesson 2, panel temperature is compared with power output. Lesson 3 deals with balancing voltage and current output to create the largest power output (using Ohm's law and the electrical power equation [power = voltage x current]). In lesson 4, students examine the effect of concentrating solar radiation on PV panels.

The four activities use mini PV panels, multimeters and 100-watt lamps—items that are re-usable for all activities. Refer to the attached Solar Panel Source Information and Multimeter Source Information.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

See individual lessons and activities for standards alignment.

Subscribe

Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!
PS: We do not share personal information or emails with anyone.

Unit Schedule

Worksheets and Attachments

Visit [www.teachengineering.org/curricularunits/view/cub_pveff_curricularunit] to print or download.

More Curriculum Like This

High School Lesson
Solar Angles and Tracking Systems

Students learn about the daily and annual cycles of solar angles used in power calculations to maximize photovoltaic power generation. They gain an overview of solar tracking systems that improve PV panel efficiency by following the sun through the sky.

High School Lesson
Maximum Power Point

Students learn how to find the maximum power point (MPP) of a photovoltaic (PV) panel in order to optimize its efficiency at creating solar power. They also learn about real-world applications and technologies that use this technique, as well as Ohm's law and the power equation, which govern a PV pa...

High School Lesson
The Temperature Effect

Students explore how the efficiency of a solar photovoltaic (PV) panel is affected by the ambient temperature. They learn how engineers predict the power output of a PV panel at different temperatures and examine some real-world engineering applications used to control the temperature of PV panels.

High School Lesson
Concentrated Solar Power

Students learn how the total solar irradiance hitting a photovoltaic (PV) panel can be increased through the use of a concentrating device, such as a reflector or lens.

Assessment

Pre/Post Unit Quiz: To conduct an overall pre/post assessment of the unit and gauge student learning, administer the eight-question Solar Quiz to students before beginning any discussion on photovoltaic solar panels. After unit completion, administer the same quiz to the same students and compare pre- to post- scores.

Copyright

© 2009 by Regents of the University of Colorado

Contributors

William Surles, Abby Watrous, Jack Baum, Stephen Johnson, Eszter Horyani, Dr. Gregor Henze, Malinda Schaefer Zarske, Denise W. Carlson

Supporting Program

Integrated Teaching and Learning Program, College of Engineering and Applied Science, University of Colorado Boulder

Acknowledgements

This high school curriculum was originally created as a class project by engineering students in a Building Systems Program course at CU-Boulder.

The contents of these digital library curricula were developed by the Integrated Teaching and Learning Program under National Science Foundation GK-12 grant no. 0338326. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: February 1, 2018

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org