Quick Look
Grade Level: 11 (912)
Choose From: 4 lessons and 3 activities
Subject Areas: Algebra
Summary
Students examine an image produced by a cabinet xray system to determine if it is a quality bone mineral density image. They write in their journals about what they need to know to be able to make this judgment. Students learn about what bone mineral density is, how a BMD image can be obtained, and how it is related to the xray field. Students examine the process used to obtain a BMD image and how this process is related to mathematics, primarily through logarithmic functions. They study the relationship between logarithms and exponents, the properties of logarithms, common and natural logarithms, solving exponential equations and Beer's law.Engineering Connection
Biomedical engineering consists of the application of engineering principles and techniques to the fields of medicine and life sciences. The process of calculating a small specimen bone mineral density image using a cabinet xray system us useful in determining the effectiveness of medications and treatments in medical research.
Unit Overview
This "legacy cycle" unit is structured with a contextuallybased Grand Challenge followed by a sequence of instruction in which students first offer initial predictions (Generate Ideas) and then gather information from multiple sources (Multiple Perspectives) . This is followed by Research and Revise as students integrate and extend their knowledge through a variety of learning activities. The cycle concludes with formative (Test Your Mettle) and summative (Go Public) assessments that lead students towards answering the Challenge question. See below for the progression of the legacy cycle through the unit. Research and ideas behind this way of learning may be found in How People Learn,(Bransford, Brown & Cocking, National Academy Press, 2000); see the entire text at https://www.nap.edu/read/9853/chapter/1.
The "legacy cycle" is similar to the "engineering design process" in that they both involve identifying an existing societal need, combining science and math to develop solutions, and using the research conclusions to design a clear, conceived solution to the original challenge. Though the engineering design process and the legacy cycle depend on correct and accurate solutions, each focuses particularly on how the solution is devised and presented. See an overview of the engineering design process at https://www.teachengineering.org/engrdesignprocess.php
Educational Standards
Each TeachEngineering lesson or activity is correlated to one or more K12 science,
technology, engineering or math (STEM) educational standards.
All 100,000+ K12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN),
a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics;
within type by subtype, then by grade, etc.
Each TeachEngineering lesson or activity is correlated to one or more K12 science, technology, engineering or math (STEM) educational standards.
All 100,000+ K12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.
Common Core State Standards  Math

(+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
(Grades 9  12)
More Details
Do you agree with this alignment?
More Curriculum Like This
Through this unit, written for an honors anatomy and physiology class, students become familiar with the human skeletal system and answer the Challenge Question.
Students are introduced to the challenge question, which revolves around proving that a cabinet xray system can produce bone mineral density images. Students work independently to generate ideas from the questions provided, then share with partners and then with the class as part of the Multiple Pe...
Through four lessons and three handson activities, students learn the concepts of refraction and interference in order to solve an engineering challenge. Students learn about some hightech materials and delve into the properties of light, including the equations of refraction (index of refraction,...
Students design a method for separating steel from aluminum based on magnetic properties like is often seen recycling operations. One design requirement is that the magnet must be able to be switched off to allow for the recollection of the steel. Through four lessons and four handson activities, s...
Unit Schedule
 Day 12: Bone Density Challenge Introduction lesson
 Day 3: Exploring Bone Mineral Density activity
 Day 4: Bone Density Math and Logarithm Introduction lesson
 Day 5: Common and Natural Logarithms and Solving Equations lesson
 Day 6: Linear Regression of Bone Mineral Density Scanners activity
 Day 7: Bone Mineral Density Math and Beer's Law lesson
 Day 8: Light Intensity Lab activity
Assessment
Throughout the lessons and activities, homework assignments cover conversion between exponents and logarithms, logatithm properties, common logarithms, natural logarithms, change of base formula, Beer's law and solving exponential equations. All these serve as assessment tools. The concluding assessment (in the final lesson, lesson 4) is students' answer to the challenge question, which may be in the form of a pamphlet, poster or presentation.
Copyright
© 2013 by Regents of the University of Colorado; original © 2006 Vanderbilt UniversityContributors
Kristyn Shaffer ; Megan JohnstonSupporting Program
VU Bioengineering RET Program, School of Engineering, Vanderbilt UniversityAcknowledgements
The contents of this digital library curriculum were developed under National Science Foundation RET grant nos. 0338092 and 0742871. However, these contents do not necessarily represent the policies of the NSF, and you should not assume endorsement by the federal government.
Last modified: February 13, 2020
Comments