Hands-on Activity: Linear Regression of Bone Mineral Density Scanners

Contributed by: VU Bioengineering RET Program, School of Engineering, Vanderbilt University

A table-height machine with a front control panel and a door that opens to a space inside with a shelf and wires.
A small specimen bone mineral density scanner.

Summary

Students complete an exercise showing logarithmic relationships and examine how to find the linear regression of data that does not seem linear upon initial examination. They relate number of BMD scanners to time.

Engineering Connection

Rarely in the real world does data collected by scientists and engineers fit an exact equation. Finding the equation of the line that fits the data best is a large part of what all engineers do when they collect and analyze data. In this activity, students practice this skill, especially as it involves using natural logarithms.

Pre-Req Knowledge

Students must be comfortable using graphing calculators (though detailed instructions are included). Students must also be familiar with linear graphing.

Learning Objectives

After this activity, students should be able to:

  • Use the linear regression function on a graphing calculator.
  • Explain how the natural logarithm can be used to linearize data.

More Curriculum Like This

Statistical Analysis of Flexible Circuits

Students are introduced to the technology of flexible circuits, some applications and the photolithography fabrication process. They are challenged to determine if the fabrication process results in a change in the circuit dimensions since, as circuits get smaller and smaller (nano-circuits), this c...

A Tale of Friction

High school students learn how engineers mathematically design roller coaster paths using the approach that a curved path can be approximated by a sequence of many short inclines. They apply basic calculus and the work-energy theorem for non-conservative forces to quantify the friction along a curve...

High School Lesson
All about Linear Programming

Students learn about linear programming (also called linear optimization) to solve engineering design problems. They apply this information to solve two practice engineering design problems related to optimizing materials and cost by graphing inequalities, determining coordinates and equations from ...

High School Lesson
Can You Hear Me Now?

Students apply their knowledge of linear regression and design to solve a real-world challenge to create a better packing solution for shipping cell phones. They make composite material packaging containers using cardboard, fabric, plastic, paper and/or rubber bands to create four different-weight p...

High School Activity

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Fit a function to the data; use functions fitted to data to solve problems in the context of the data. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • Technology transfer occurs when a new user applies an existing innovation developed for one purpose in a different function. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
  • Fit a function to the data; use functions fitted to data to solve problems in the context of the data. (Grades 9 - 12) Details... View more aligned curriculum... Do you agree with this alignment?
Suggest an alignment not listed above

Materials List

Each student needs:

Introduction/Motivation

Now that we have learned the basics of natural logarithms, let's do a real-world activity that uses natural logarithms. What you are going to do with the provided data is something that many engineers do all the time. All types of engineers use natural logarithms to analyze data and you will be doing just the very basics of this type of data analysis.

Procedure

Before the Activity

Make copies of the worksheet (and calculator instructions, if needed).

With the Students

Hand out the worksheets and explain the activity. This worksheet asks students to do a series of exercises with a graphing calculator. If students are familiar enough with graphing, they can do it on their own. If not, provide them with the detailed instructions on how to complete the graphing exercise. Note that one step in the instructions asks students to show their graphs to the teacher to check that they understand how to create a graph before moving to the next step.

Attachments

Assessment

Activity Embedded Assessment

Graphing Checkpoint: If students use the graphing calculator instructions, there is a checkpoint where the teacher can see if they understand how to correctly graph.

Post-Activity Assessment

Activity Worksheet: Collect and grade the activity worksheet for completion and accuracy. Review their data, graph, answers and work to gauge their mastery of the subject.

Activity Scaling

  • For lower grades, provide the graphing calculator instructions.
  • For upper grades, do not provide the graphing calculator instructions.

Contributors

Kristyn Shaffer; Megan Johnston

Copyright

© 2013 by Regents of the University of Colorado; original © 2006 Vanderbilt University

Supporting Program

VU Bioengineering RET Program, School of Engineering, Vanderbilt University

Acknowledgements

The contents of this digital library curriculum were developed under National Science Foundation RET grant nos. 0338092 and 0742871. However, these contents do not necessarily represent the policies of the NSF, and you should not assume endorsement by the federal government.

Last modified: June 21, 2018

Comments