Summary
Human beings are fascinating and complex living organisms—a symphony of different functional systems working in concert. Through a 10-lesson series with hands-on activities students are introduced to seven systems of the human body—skeletal, muscular, circulatory, respiratory, digestive, sensory, and reproductive—as well as genetics. At every stage, they are also introduced to engineers' creative, real-world involvement in caring for the human body.Engineering Connection
Engineers are increasingly involved in design for the human body. Biomedical engineers create artificial limbs using materials and sensors to replicate natural function and movement. Understanding the muscular system enables engineers to design everyday tools, appliances and products. Other engineers design medical solutions to improve health and address disorders. This may take the form of devices, implants, machines, medicines and technologies (diagnostic equipment, pacemakers, surgical techniques, hearing aids, laser eye surgery, ultrasound, amniocentesis, in-vitro fertilization, pain medicine). Engineers also apply their understanding of DNA to numerous real-world applications. As part of their design work, engineers create flow charts, prototypes and models, and make technical presentations, to learn, test and communicate their work.
Unit Overview
Overview of topics by lesson: 1) skeletal system, 2) muscular system, 3) circulatory system, 4) respiratory system, 5) digestive system, 6) auditory-hearing sensory system, 7) vision sensory system, 8) reproductive system, 9) genetics, and 10) skeletal system.
Educational Standards
Each TeachEngineering lesson or activity is correlated to one or more K-12 science,
technology, engineering or math (STEM) educational standards.
All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN),
a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics;
within type by subtype, then by grade, etc.
Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.
All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.
See individual lessons and activities for standards alignment.
Subscribe
Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!Unit Schedule
The following schedule provides a suggested order of the lessons and activities. However, you may choose to only teach some of the activities – as your time and priorities permit.
- Engineering Bones lesson
- Prosthetic Party: Build and Test Replacement Legs activity
- Sticks and Stones Will Break That Bone! activity
- Muscles, Oh My! lesson
- The Artificial Bicep activity
- Measuring Our Muscles activity
- Body Circulation lesson
- Clearing a Path to the Heart activity
- Breathe In, Breathe Out lesson
- Polluted Air = Polluted Lungs activity
- Digestion Simulation lesson
- Protect That Pill activity
- My Mechanical Ear Can Hear! lesson
- Sounds All Around activity
- Biomedical Devices for the Eyes lesson
- Protect Those Eyes activity
- We've Come a Long Way, Baby! lesson
- You're the Expert activity
- DNA: The Human Body Recipe lesson
- DNA Profiling & CODIS: Who Robbed the Bank? activity
- DNA Build activity
- Bone Fractures and Engineering lesson
- Repairing Broken Bones activity (requires multiple 60-minute periods to complete; suggest 60 minutes on five different days)
More Curriculum Like This
Students discuss several human reproductive technologies available today — pregnancy ultrasound, amniocentesis, in-vitro fertilization and labor anesthetics. They learn how each technology works, and that these are ways engineers have worked to improve the health of expecting mothers and babies.
Other Related Information
Optional: Show students the What Is Engineering? video)
Copyright
© 2007 by Regents of the University of ColoradoContributors
See individual lessons and activities.Supporting Program
Integrated Teaching and Learning Program, College of Engineering, University of Colorado BoulderAcknowledgements
This digital library content was developed by the Integrated Teaching and Learning Program under National Science Foundation GK-12 grant no. 0338326. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.
Last modified: April 12, 2020
User Comments & Tips