Curricular Unit: Environmental Engineering

Contributed by: Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Quick Look

Grade Level: 7 (6-8)

Choose From: 7 lessons and 14 activities

Subject Areas: Earth and Space

A series of three children's drawings: A depiction of the water cycle. A polluted Earth. A person drinking water from a polluted water source.
Student depictions of the Earth and pollution
copyright
Copyright © Kids Making A Connection, Health & the Environment (KMAC), Department of Health and Human Services, National Institutes of Health, National Institute of Environmental Health Sciences, http://kids.niehs.nih.gov/waterkmac/water1.htm

Summary

In this unit, students explore the various roles of environmental engineers, including: environmental cleanup, water quality, groundwater resources, surface water and groundwater flow, water contamination, waste disposal and air pollution. Specifically, students learn about the factors that affect water quality and the conditions that enable different animals and plants to survive in their environments. Next, students learn about groundwater and how environmental engineers study groundwater to predict the distribution of surface pollution. Students also learn how water flows through the ground, what an aquifer is and what soil properties are used to predict groundwater flow. Additionally, students discover that the water they drink everyday comes from many different sources, including surface water and groundwater. They investigate possible scenarios of drinking water contamination and how contaminants can negatively affect the organisms that come in contact with them. Students learn about the three most common methods of waste disposal and how environmental engineers continue to develop technologies to dispose of trash. Lastly, students learn what causes air pollution and how to investigate the different pollutants that exist, such as toxic gases and particulate matter. Also, they investigate the technologies developed by engineers to reduce air pollution.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Engineers continually work to prevent pollution so that our air is safe to breathe and our water is safe to drink and use for bathing and recreating. Different types of engineers continue to explore new, creative ideas to lower air emissions, such as designing more efficient vehicles, industrial filters to reduce the amount of particulate matter released into the atmosphere, and indoor air filters to keep our indoor air clean. Engineers design drinking water treatment facilities that bring safe drinking water to our schools, offices and homes.

Environmental and civil engineers guard the quality of our water resources in many ways. They design water and sewage treatment plants that clean water for human use, and design industrial systems and filters that make sure factory-released water is not polluting our environment. Furthermore, environmental engineers help clean up water sources and air that are polluted. They are challenged to clean the groundwater and restore it to a natural or usable state so that it remains free of harmful chemicals that could contaminate the drinking water supply and make people sick.

Another very important type of engineering involves the creative technologies to dispose of the enormous amount of trash produced in the U.S. Engineers design sanitary landfills to prevent groundwater, soil and air pollution. With the mountains of trash winding up in landfills each day, engineers are working to find ways to more quickly break down materials and create methods to reuse what is left for trash.

Whether keeping our water safe or finding ways to reuse water bottles, engineers are very important to our environmental health. Clearly, engineers greatly contribute to our health and safety.

(optional: Show students the What Is Engineering? video)

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

NGSS Performance Expectation

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Alignment agreement:

Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

Alignment agreement:

Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Alignment agreement:

All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

Alignment agreement:

Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.

Alignment agreement:

View other curriculum aligned to this performance expectation
NGSS Performance Expectation

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Apply scientific principles to design an object, tool, process or system.

Alignment agreement:

Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for different living things.

Alignment agreement:

Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation.

Alignment agreement:

The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.

Alignment agreement:

View other curriculum aligned to this performance expectation
NGSS Performance Expectation

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (Grades 6 - 8 )

Do you agree with this alignment?

This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.

Alignment agreement:

The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions.

Alignment agreement:

All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment.

Alignment agreement:

The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.

Alignment agreement:

View other curriculum aligned to this performance expectation
  • Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (Grade 6 ) More Details

    View aligned curriculum

    Do you agree with this alignment?

Suggest an alignment not listed above

More Curriculum Like This

Landfills: Building Them Better

In this lesson, students learn about the three methods of waste disposal in use by modern communities. They also investigate how engineers design sanitary landfills to prevent leachate from polluting the underlining groundwater.

Middle School Lesson
Soil Contamination in Rivers

Students learn about contamination and pollution, specifically in reference to soil in and around rivers. Student groups use color sensors to take light reflection measurements of different colors of sand (dyed with various amounts of a liquid food dye), generating a set of "soil" calibration data. ...

Elementary Activity
Got Dirty Air?

Students are introduced to the concepts of air pollution and technologies that engineers have developed to reduce air pollution. They develop an understanding of visible air pollutants with an incomplete combustion demonstration, a "smog in a jar" demonstration, construction of simple particulate ma...

Elementary Lesson
What's Air Got to Do with It? Properties & Quality

Students use M&M® candies to create pie graphs that express their understanding of the composition of air. Next, they watch and conduct several simple experiments to develop an understanding of the properties of air (it has mass, it takes up space, it can move, it exerts pressure, it can do work). F...

Unit Schedule

Copyright

© 2009 by Regents of the University of Colorado

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Acknowledgements

The contents of these digital library curricula were developed under grants from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education, and the National Science Foundation (GK-12 grant no. 0338326). However, these contents do not necessarily represent the policies of the U.S. Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: August 19, 2019

Comments

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org