Monthly Editor's Pick

December 2018

Simple Snow Load Roof Model Demo: Which Roof Is Tops? Activity

How do civil engineers design structures that can withstand local weather conditions? Whether you live in a climate with heavy snowfall or not, this engaging activity helps even very young students consider the advantages of different roof shapes under a "snow load" by sprinkling cups of flour onto model houses. What happens to snow when it sits on a curved roof? What are the design advantages to building an A-frame roof versus a flat roof? As a class, test the roof shapes of three “model” houses. Then discuss and explore different shapes and materials to create buildings that are strong enough to exist in a winter wonderland!

November 2018

Test & Improve: Making Tall & Strong Recycled Towers Activity

Can engineers build soaring towers with reused materials? While reinforced concrete and steel reign supreme as traditional building materials, many engineers are exploring ways to incorporate reused and recycled materials into their designs. In this activity, elementary-level students take on the role of engineers to design their own towers! Along with the challenge of designing their towers under a number of constraints, students also simulate "stress tests" to test the stability of their designs. Will your students' designs hold up under the simulated strong winds and earthquakes?

October 2018

Exploring Variables While Testing & Improving Mint-Mobiles Activity

On your mark, get set, build! Using lifesaver-shaped candies, plastic drinking straws, Popsicle sticks, and other simple craft materials, students design, build, and test model race cars as a way to explore independent, dependent, and control variables. After constructing their "mint-mobiles," it's time for the race! Students measure the changes in distance traveled while adding mass to their vehicles. Through this activity, students engage in the steps of the engineering design process by brainstorming, planning, building, testing, and improving their racers. Wave the green flag, and let the engineering begin!

September 2018

Mountain Rescue: Transmitting & Receiving Code Messages Activity

Crack the code, engineer a rescue, and be the hero! In this engaging activity, students encode, decode, transmit, receive and store messages for a hypothetical rescue mission. They are challenged to rescue four misguided climbers who are stranded on a snowy mountainside—with temperatures plummeting fast! Once students find the climbers, it's a race against time to communicate to basecamp using coded messages about whether or not the climbers are injured. Additionally, students need to communicate the climbers’ locations using only flashlights, a map, and a code sheet. Through this activity, students practice coding and decoding, which are important aspects in electrical and computer engineering. Several activity extensions enable students to explore real-life coding and communication applications.

August 2018

Designing Harmonic Timing Devices: Ready, Set, Escape Activity

Ready, set, escape! In this open-ended design activity, students are challenged to create a simple yet accurate timing device that measures a period of exactly three minutes in order to enable a hypothetical prison escape. Constrained with limited supplies, students exercise their creativity and engineering knowledge to design devices. They also follow the steps of the engineering design process and document this on a student handout: they brainstorm ideas, select the best solution to pursue, and sketch their designs. After building prototypes, students test and record their times, and then iterate their designs for improvement—to obtain a more accurate time. During this process, students learn about harmonic design while observing and explaining the effects of conservation of energy. This activity aligns to NGSS, ITEEA as well as state science standards.

July 2018

Model Earth Core Samples: What’s Down There? Activity

How is oil found? In this hands-on elementary-level activity, students explore the layers under the Earth’s surface and learn how they are used by engineers to find and extract oil. Students learn how fossil fuels are formed over time and where they can be located under the Earth's crust. Student groups use six colors of modeling clay to make models of the planet Earth. They learn about core drilling as a method to find oil using cores taken from deep below the Earth’s surface. They use clear plastic drinking straws to model core drilling and take core samples—as if they are looking for fossil fuels. Then the teams analyze their samples and make informed decisions as to whether or not they should "drill for oil" in specific locations. This activity aligns to NGSS and includes a helpful YouTube video that models the activity.

June 2018

Just Like Kidneys: Semipermeable Membrane Prototypes Activity

As one of our partner teachers said, “This is a great open-ended design activity with lots of redesign built in—and it ends with the class building the best prototype membrane with contributions from each group.” The challenge is to make a semipermeable membrane prototype that does not immediately let water pass through. Students brainstorm, create and experiment with possible solutions. They get valuable practice in evaluating competing design solutions for how well they meet the criteria and constraints, and modeling cell functions like osmosis and diffusion—experiences that meet engineering and science NGSS. Typically, many middle school students have heard of dialysis and might know that it has something to do with filtering blood. After this activity, they will have experienced a cool engineering design project and gained a better understanding of how filtering occurs in this common medical procedure. A pre/post quiz, student worksheet and project rubric are provided.

May 2018

Class Lava Crossing Challenge: Hot Problem Solving Activity

The challenge: get the entire class from one location to another spot 20 feet away without touching the ground between because it is covered in hot lava! In this open-ended, physically active elementary-age activity, the entire class works together to problem solve—and learn the steps of the engineering design process as they go. Together, students brainstorm, sketch and compose a well thought-out plan, which they test and revise outside. A concluding discussion connects students' problem-solving experience to real-life engineering challenges, such as inventing new products or better ways to run a factory. Keep this activity handy for a day when the kids want to be outside—or for an ice-breaker, afterschool club or summer camp! Includes a design and brainstorming handout. Meets NGSS and ITEEA engineering design standards.

April 2018

Solving Everyday Problems Using the Engineering Design Cycle Activity

Can’t find anything in the closet? Broken backpack strap? Bookshelf that keeps falling over? Being able to “solve everyday problems” is a skill worth cultivating! This exemplar activity shows middle school students how to apply the engineering design process to daily life situations that need improvement—and it meets all four NGSS engineering design standards. Students learn the steps through a slide presentation and a written case study with photos. They walk through two real-life examples of how kids figured out and implemented solutions to improve a teacher’s homework return process with a desk organizer and address the chaos of a student’s school locker. They learn to define project criteria and constraints, brainstorm ideas, evaluate multiple possible design solutions, and optimize the best solution. This prepares students to develop their own innovations to real-life problems, and to conduct the optional open-ended hands-on extension—to creatively design and construct their own locker organizers using scrap materials. Students gain the tools to view the world as a place where they can actively make a difference.

March 2018

Bone Transplants—No Donors Necessary! Activity

Did you know that engineers can create replacements for nonfunctioning body structures—without any donors(!)—through bone tissue engineering?! In this hands-on and engaging activity, high school students act as biomedical engineers to design turkey femur prototypes intended as bone transplants for birds. They use calipers to take exact measurements of a real turkey femur, aiming to make their 3D models match the structure, mass and density of the real bone. Using modeling clay and other craft materials, students create 3D bone prototypes. Then they cut and measure the turkey femur cross-section, draw it in CAD software and print it on a 3D printer. Throughout the activity, students follow the steps of the engineering design process to design their prototypes. They also watch an informative TED video about using 3D printers to create organs to address the problem of long waits for organ transplants. This activity aligns to several science and math standards, including NGSS and CCSS.

February 2018

Can You Hear Me Now? Activity

Have you ever received an electronic device in the mail only to find it damaged during shipping? How frustrating! In this hands-on and relatable activity, students act as engineers to solve the real-world challenge to design a better packing solution for shipping cell phones. They apply scientific, mathematic and engineering ideas to design, evaluate and refine a solution that minimizes the force on an object during a collision. They work through the engineering design process to create new packaging that prevents shipping damage while considering design constraints such as cost and weight; they combine different materials—such as cardboard, fabric, plastic and rubber bands—to create new “composite material” packaging and use pieces of glass to model a cellphone during testing. Additionally, students apply their knowledge of linear regression to accurately predict the optimum drop height that can be obtained without the “phone” breaking. At the end, students write summary lab reports to describe what they did in the project, their results and findings. This activity aligns to several science and math standards, including NGSS and CCSS.

January 2018

Help Bill! Bioprinting Skin, Muscle and Bone Activity

3D bioprinting can be used to treat injuries! In this informative and engaging hands-on activity (that does not require 3D printers!), a humorous one-minute video presents high-school students with a hypothetical scenario that introduces "Bill," who has been badly injured in an automobile accident, damaging some bone, muscle and skin beyond repair. Students act as biomedical engineers to replace Bill’s injured areas with bioprinted bone, muscle and skin grafts. They create mock bioprinters from ordinary materials—cardboard, dowels, wood, spools, duct tape, zip ties and glue—and use squeeze-bags of icing to lay down tissue layers. Student teams apply what they learned about biological tissue composition and tissue engineering in the associated lesson to design and fabricate model replacement tissues. They tangibly learn about the technical aspects and challenges of 3D bioprinting technology. To conclude, teams present their prototype designs to the class. The activity includes helpful videos of mock 3D-bioprinter assembly and use instructions. This activity aligns to several science and math standards, including NGSS and Common Core.

December 2017

Big Data, What Are You Saying? Activity

What exactly do we mean by “big data”? These days, big data is the accumulation of vast amounts of information from various sources—such as online user browsing and shopping—and the creative analysis of that data to learn from it. In this math-strong activity with a trending real-world connection, high-school students act as R&D entrepreneurs researching variables affecting the market of chosen products using big data to form and support conclusions. Students first identify a product (maybe a video game, shoe, food) and brainstorm production and marketing variables (such as product cost, price, materials). After researching and collecting pertinent consumer data, they import, organize and analyze the data using Excel and other software to inform their product production and marketing plans. They calculate statistics and generate graphs to discover relationships between variables that are essential for decision-making. Based on their findings, students suggest product launch strategies and present their conclusions to the class. This activity is ideal for high school statistics classes and aligns to several math standards, including CCSS.

November 2017

Mmm Cupcakes: What’s Their Impact? Activity

Who doesn’t like cupcakes? In this activity, students apply their math skills to determine the environmental impact of this favorite snack over its life cycle. As a class project, they conduct a life-cycle assessment of one cupcake. To do this, six teams examine and make calculations about the energy use and emissions release at each of the six steps in the cupcake life cycle. They pull together the numbers and compare various life-cycle stage options, such as two possible disposal endings—landfilling vs. composing of discarded cupcake paper liners. Students come to see how every object they encounter has a complete life cycle—from cradle to grave—which is worth critiquing to design smarter. After finishing this activity, one fifth-grade student stated: I liked learning about life cycle assessment. I got to know how people could see where an object came from and all the energy it needs at each step to make it. Now I look at things around me and try to think where they came from.”

October 2017

Diseases Exposed: ESR Test in the Classroom Activity

High school students jump into biomedical engineering in this hands-on stimulating lab activity by simulating a real-world diagnostic screening test that’s used around the world daily to identify diseases present in people. Students model the erythrocyte sedimentation rate (ESR) test, which is a simple blood separating test based on the sedimentation technique that medical professionals use to provide diagnostic and medical care. In their lab work, student teams modify a blood model composed of tomato juice, petroleum jelly, butter and olive oil to simulate conditions such as anemia, rheumatoid arthritis and leukocytosis. They explore the three stages of sedimentation—aggregation, settling and packing—and measure the ESR as the plasma height that lies over the erythrocyte sediment. If a disease is present, the ESR value deviates from the normal value because diseases alter blood composition such as density and viscosity, enabling students to correlate their measurements for each blood sample with disease conditions. This activity is packed with numerous informative videos and aligns to NGSS, ITEEA and other science standards—a great way to bring biomedical engineering into chemistry class!

September 2017

Gears: Lift It Up! Activity

Using the “right” gears can be like having superpowers! Finding the ideal gear ratio can make seemingly impossible tasks possible. In this optimization activity geared towards middle schoolers (pun intended!), students learn about the trade-off between speed and torque. They are challenged to design a gear set that can lift a given load (provide enough torque) as fast as possible. Using a LEGO robot pulley system with two independent gear sets and motors that spin two pulleys with weights attached by string, teams test and refine their designs to attain an ideal gear ratio for the system. They learn how to choose the gear ratio for a specific task and discover the trade-off between power and speed. A pre-activity teacher demo illustrates the effect of adding increasing amounts of weight to pulley systems with different gear ratios. This activity aligns to NGSS, CCSS, ITEEA and other science and math standards. Pre/post quizzes and a student worksheet are provided.

August 2017

Mutation Telephone Activity

Who remembers playing “telephone” as a kid? In this engaging biology activity, teens learn about DNA mutations. They enact the popular childhood “telephone” game to illustrate how DNA mutations occur over several cell generations—each communication step representing a biological process related to the passage of DNA from one cell to another. The game starts off with the first student in a line receiving a set of instructions that represent a single gene from an organism’s DNA. This student whispers the instructions to a second student, the second to the third, and so on until the message reaches the last student who then performs the instructions that s/he was told! Comparing the initial and final instructions reveals the types of mutations (normal, substitution, deletion or insertion) that occurred in the person-to-person (cell-to-cell, natural or genetically engineered) communications. In the second part of the activity, students use their results to test how mutation affects organisms' survivability in the wild by demonstrating natural selection through “predatory” enactments. This activity aligns to NGSS, ITEEA and other science standards, and includes a worksheet.

July 2017

Volumes of Complex Solids Activity

"This is dense, creative curriculum—a gem for AP calculus teachers," said one of our partner teachers. In this challenging week-long activity, students are presented with a hypothetical engineering situation for which they need to determine the volume of a nuclear power plant’s cooling tower. In order to complete the task, students learn a detailed volume estimation procedure for complex solids. They first practice using the volume procedure on small objects before independently estimating the volume of a cooling tower. During both guided and independent practice, students use free geometry software, a photograph of the object, a known dimension of it, a spreadsheet application and integral calculus techniques to calculate the volume of complex shape solids within a <5% margin of error. Students create a blueprint of their complex solid of revolution and use an appropriate scale factor to estimate its dimensions, which can be used to calculate its volume. This activity meets many science, math and technology standards, including NGSS, CCSS and ITEEA.

June 2017

Lending a Hand: Teaching Forces through Assistive Device Design Activity

A pair of glasses, a hearing aid, a cane and a crutch—what do these objects have in common? They are all assistive devices that help people see, hear and walk! In this project-based activity, students act as biomedical engineers as they design and test assistive hand device prototypes to help a 12-year-old boy with cerebral palsy grip a cup. In doing so, students learn how biomedical engineers create assistive devices for persons with fine motor skill disabilities; they also learn about types of forces (balanced and unbalanced), form and function, and hand structure. Given design criteria from the client—including limited materials and a $50 budget—teams follow the engineering design process steps by conducting research, brainstorming ideas, sketching, constructing and testing prototypes. They test to see if the prototype devices can grip a cup with 200 ml of sand. Then they redesign, re-test, and make improvements. Finally, students reflect on their designs and the process. This activity meets science, math and technology standards, including NGSS, CCSS and ITEEA.

May 2017

Elementary School Engineering Design Field Day Curricular Unit

Have you ever considered having an "engineering design field day" at your school?! The 10 design project activities in this unit are each great on their own: spaghetti soapbox derby, naked egg drop, and building skyscrapers, towers, wind-powered sail cars, bridges and water bottle rockets. But consider combining them to give middle school students practice in the engineering design process as they prepare their designs for an entertaining and culminating seven-hour field day competition. As a bonus, include a "math competition" as part of the day—using the provided six math tests for grades 1-6 students. End the day with awards for the winning designs!

April 2017

Design Your Own Snazzy Sneakers Maker Challenge

Woo-hoo! TeachEngineering has joined the MAKER MOVEMENT! We just added "Maker Challenges" to the collection—like this one about making shoes! Students come up with their own design requirements for a new type of shoe— for a specific activity or a specific "look." They sketch plans and build prototypes, then test and improve them. As with all Maker Challenges, the experience is student directed and easy to scale up or down. TeachEngineering provides the basic challenge along with suggested materials and teacher prompts. If you have maker activities that worked well with your students, consider writing them up and submitting to TeachEngineering for publishing—to share with others!

March 2017

Chromatography (for Informal Learning) Sprinkle

In this easy-prep, “taste of engineering” activity, youngsters see the separation of ink into its components. They place permanent marker ink on coffee filter paper that is dipped into isopropyl alcohol; then they repeat with water to see if the results are different. The process—called chromatography—is a way to look at complex mixtures by separating them into their components. It’s not a chemical process; it’s a physical process because the mixture components are not chemically combined. To wrap up the 45-minute activity, students share their findings and learn that different inks have different properties such as how well they dissolve in certain types of solvents—which is important for many real-world applications like criminal evidence investigation and pollution cleanup. This engaging “sprinkle” is ideal for after-school clubs and scouts, and is also available in Spanish!

February 2017

Glaciers, Water and Wind, Oh My! Activity

What is erosion and how does it relate to math and engineering? In this hands-on, math-enriched activity designed for fifth graders, students learn about five types of erosion (chemical, water, wind, glacier and temperature) as they rotate through stations and model each type on rocks, soils and minerals. Students learn about the effects of each erosion type and discover that engineers study erosion in order to design ways to protect our environment, structures and people’s lives. In a series of real-world scenarios (math word problems), students make calculations about the effects of erosion, including calculating erosion damage on forest, personal property and mountains, as well as determining the cost of damage. This activity includes two student worksheets and is part of a nine-lesson and 16-activity elementary-level unit called “Engineering for the Earth.” The activity meets several state and national math standards including CCMS, and science and technology standards, including NGSS and ITEEA.

January 2017

Let’s Learn about Spatial Viz! Lesson

"I love this curriculum. It’s scalable for middle and high school students, and it’s an important skill that is typically overlooked," said one of our partner teachers. While years of research have linked spatial visualization skills to success in engineering, NEW research shows that spatial visualization skills can be LEARNED. To begin this lesson, students complete a 12-question, multiple-choice spatial visualization practice quiz. Then, through four associated activities, students work through hands-on, interactive and tangible exercises on the topics of isometric drawings and coded plans, orthographic views, one-axis rotations and two-axis rotations. Finally, students take the quiz again to see how they've improved. This curriculum is the result of years of testing with first-year engineering college students, and has proved successful in improving student spatial visualization skills—thereby setting them up for success in engineering. Bring SV into your classroom today!

December 2016

Visual Art and Writing in Science and Engineering Lesson

How can engineers display data and results in an aesthetically pleasing, easy-to-understand way? In this high school lesson, students learn the value of—and connections between—art and writing in both science and engineering. They learn the principles of visual design (contrast, alignment, repetition and proximity) as well as the elements of visual design (line, color, texture, shape, size, value and space) to acquire the vocabulary to describe visual art and design. Engineers often need to convey their designs and ideas visually to create buy-in, appeal to clients or win research funding. So engineers must be able to creatively and clearly communicate their work and designs—often using art. Students also learn about the science and engineering research funding process and heat flow/thermal conductivity basics, which prepare them for the associated engineering design activity in which they create visual representations to communicate their collected experimental data. This lesson and activity meet many math, science and technology standards, including CCMS, NGSS and ITEEA.

November 2016

Creating Model Working Lungs: Just Breathe Activity

Breathe in. Breathe out. What is happening to your lungs as you inhale and exhale? In this popular hands-on activity, students learn about the respiratory system and explore the inhalation/exhalation process of the lungs. Using everyday materials (2-liter plastic bottles and balloons), students act as engineers and create model lungs to analyze their function and the overall breathing process. They learn that during inhalation, the volume of the thoracic cavity increases while pressure in the lungs decreases, and that during exhalation, the volume of the thoracic cavity decreases while pressure in the lungs increases. By studying the respiratory system, engineers have been able to create life-saving technologies such as the heart-lung machine that keeps patients alive during heart transplant procedures. Students learn about the many engineering advancements that have helped people who have respiratory system difficulties. At activity end, student teams demonstrate their models and explore what happens to the respiratory system if punctured. This upper elementary-level activity meets science and technology standards, including NGSS and ITEEA.

October 2016

Trade-Offs and Maximizing Efficiency in a Fast Food Restaurant Activity

Can you improve the efficiency of a fast-food restaurant through engineering analysis and design? In this thought-provoking activity, students attempt to improve the efficiency of a fast-food restaurant that is financially struggling due to inefficient daily routines by considering trade-offs and constraints. Acting as engineers, students identify strengths and weaknesses in the existing system and generate a plan to improve efficiency—such as restructuring employee responsibilities, revising a floor plan and delegating tasks—while following requirements and limitations. Students culminate their analyses by writing argumentative essays summarizing and defending their suggested changes and improvements. This activity is especially engaging for students with workforce experience, helping them make meaningful connections between their everyday experiences and engineering. The activity is suitable for middle and high school students and meets science and technology standards, including NGSS and ITEEA.

September 2016

Alloy the Way to Mars Activity

NASA needs your help! What alloy would you recommend they use for a new engine intended to transport astronauts to Mars? In this straightforward activity that requires few materials, students must think like real-world engineers to help NASA decide which material to use for its RS-25 engine and turbine design. Student groups work as engineering teams, taking various measurements and performing calculations to determine the specific strength of different alloys. Students test to look for a material that is both strong and lightweight and discover that a higher specific strength yields a stronger, more lightweight material. Students learn about the ultimate tensile strength, the maximum amount of stress a material can sustain before failing, and use that and the material density to calculate specific strength of the various alloys. The activity culminates in a creative writing project as students compose letters to the Deputy Program Manager at NASA outlining their recommendations. Geared towards middle school students, this activity meets science and technology standards including NGSS and ITEEA, and comes with a preparatory lesson.

August 2016

Intraocular Pressure Sensor Design Challenge Activity

Imagine one day that you open your eyes and realize that you can only see a small portion of your surroundings—much of your range of vision is gone! Many people with glaucoma experience this every day. In this engaging activity, middle school students experience how engineers help people; they act as biomedical engineers to design pressure sensors that measure eye pressure and use 3D software to design and print 3D prototypes of their sensors (or modeling clay as an alternative). Presented with personal stories of two people with glaucoma, student teams are challenged to develop prototypes that can help them identify pressure changes in the eyes. Students learn about radio-frequency identification (RFID) technology and conduct research on pressure gauges. They are given project requirements: designs must use RFID technology, be lightweight and small, and measure eye pressure. Over seven days, teams determine an appropriate pressure gauge, design an intraocular pressor sensor prototype given constraints, 3D print the prototypes, and present them to the class. This activity meets many STEM standards, including CCMS, NGSS and ITEEA.

July 2016

Prosthetic Party (for Informal Learning) Sprinkle

Imagine you are a runner, but you lost a leg in an accident—how can you keep running? In this easy-to-prep informal learning "sprinkle," middle school students design, build and test prosthetic legs in two hours using ordinary household materials. First, students learn about prostheses, the importance of replacement legs for individuals who have lost their leg(s) to accident or injury, and are tasked to follow the steps of the engineering design process to make prosthetic leg prototypes. Student teams discuss important features of replacement legs and brainstorm design ideas. They choose fabrication materials from provided supplies, sketch their design plan and gain instructor design approval prior to constructing their prototypes. After building, students test the prosthetic limbs, making sure they can be used to walk successfully around the classroom (crude but functional!). Students improve their designs as necessary and present them to the class at the end. This engaging and fun "sprinkle" is also available in Spanish!