Curricular Unit: Plot Your Course - Navigation

Contributed by: Integrated Teaching and Learning Program, College of Engineering and Applied Science, University of Colorado Boulder

Quick Look

Grade Level: 7 (6-8)

Choose From: 10 lessons and 24 activities

Subject Areas: Earth and Space, Geometry, Measurement

Two photos: A woman at sea looks into the lens of a black, metal hand-held device. Two different types of GPS receivers, hand-held devices with many buttons and small display screens.
Navigational equipment includes sextants and GPS devices.
copyright
Copyright © NOAA, U.S. Dept. of Commerce http://oceanexplorer.noaa.gov/explorations/07mexico/background/navigation/media/sextant_600.html and U.S. EPA http://www.epa.gov/region5fields/htm/methods/gps/index.html

Summary

In this unit, students learn the very basics of navigation, including the different kinds of navigation and their purposes. The concepts of relative and absolute location, latitude, longitude and cardinal directions are explored, as well as the use and principles of maps and a compass. Students discover the history of navigation and learn the importance of math and how it ties into navigational techniques. Understanding how trilateration can determine one's location leads to a lesson on the global positioning system and how to use a GPS receiver. The unit concludes with an overview of orbits and spacecraft trajectories from Earth to other planets.
This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Many types of engineering are important to the development of navigational equipment used for travel on sea, in space and on land. Understanding the science of natural phenomena enables engineers to design and create structures and systems for a variety of navigational purposes. Mathematics is also essential to the development of navigational equipment. Satellites designed and tested by engineers use equations that take into account the relative effects of space and time.

Engineering is built upon a network of knowledge extending back in time. Even though celestial navigation is for the most part historical, the best engineers understand how things used to be done, building on the same mathematics concepts—such as geometry and trigonometry—used by engineers every day. Engineers make predictions and analyze circumstances related to motion; they must understand the relationships between speed, time and distance. They use many techniques that often involve computers to help process the many calculations required to make good estimations.

Engineers design systems that require precise and known locations, and often use triangulation calculations. They use triangulation with ground data to determine where in space satellites are located. Accurately determining a satellite's location is important to adjusting its position to keep it on course. The global positioning system (GPS) uses the same concept of triangulation; the development of this now-ubiquitous system was made possible by the contributions from many engineering disciplines. Mechanical engineers created satellite and other GPS equipment that performs reliably in the unique environment of space. Electrical engineers designed computers, circuit boards, power systems and wiring. Aerospace engineers determined satellite arrangement and orbit around the planet. Programming by software engineers enabled the satellites to operate on their own and transmit useful data to Earth receivers.

Engineering is vitally important to the creation of technology used in space, on water and on land. Without engineers, our ability to navigate our world and beyond would be much more difficult. The possibilities for future developments are only limited by our imaginations.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

NGSS Performance Expectation

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. (Grades 6 - 8)

Do you agree with this alignment?

Click to view other curriculum aligned to this Performance Expectation
This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Conduct an investigation and evaluate the experimental design to produce data to serve as the basis for evidence that can meet the goals of the investigation.

Alignment agreement:

Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object, or a ball, respectively).

Alignment agreement:

Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Alignment agreement:

NGSS Performance Expectation

MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. (Grades 6 - 8)

Do you agree with this alignment?

Click to view other curriculum aligned to this Performance Expectation
This unit focuses on the following Three Dimensional Learning aspects of NGSS:
Science & Engineering Practices Disciplinary Core Ideas Crosscutting Concepts
Develop and use a model to describe phenomena.

Alignment agreement:

Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe.

Alignment agreement:

The solar system consists of the sun and a collection of objects, including planets, their moons, and asteroids that are held in orbit around the sun by its gravitational pull on them.

Alignment agreement:

The solar system appears to have formed from a disk of dust and gas, drawn together by gravity.

Alignment agreement:

Models can be used to represent systems and their interactions.

Alignment agreement:

Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation.

Alignment agreement:

  • Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (Grade 6) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. (Grade 7) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. (Grade 7) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (Grades 9 - 12) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. (Grades 9 - 12) More Details

    View aligned curriculum

    Do you agree with this alignment?

Suggest an alignment not listed above

More Curriculum Like This

Where Am I: Navigation and Satellites

Students explore the concept of triangulation that is used in navigation satellites and global positioning systems designed by engineers. Also, students learn how these technologies can help people determine their positions or the location of someone else.

GIS, Mathematics and Engineering Integration

Students explore using a GPS device and basic GIS skills. They gain an understanding of the concepts of latitude and longitude, the geocaching phenomenon, and how location and direction features work while sending and receiving data to a GIS such as Google Earth.

Navigating at the Speed of Satellites

In this lesson, students investigate the fundamental concepts of GPS technology — trilateration and using the speed of light to calculate distances.

Gathering Global Data: Mind Bending GPS Occultations

Students learn about the remote sensing radio occultation technique and how engineers use it with GPS satellites to monitor and study the Earth's atmospheric activity.

Unit Schedule

The following schedule provides a suggested order of the lessons and activities. However, you may choose to only teach some of the activities – as your time and priorities permit.

Contributors

See individual lessons and activities.

Copyright

© 2009 by Regents of the University of Colorado

Supporting Program

Integrated Teaching and Learning Program, College of Engineering and Applied Science, University of Colorado Boulder

Acknowledgements

The contents of this digital library curriculum were developed under grants from the Satellite Division of the Institute of Navigation (www.ion.org) and the National Science Foundation (GK-12 grant no. 0338326). However, these contents do not necessarily represent the policies of the National Science Foundation and you should not assume endorsement by the federal government..

Last modified: September 25, 2018

Comments

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org