Lesson: GPS Scavenger Hunt

Quick Look

Grade Level: 8 (7-9)

Time Required: 30 minutes

Lesson Dependency:

Subject Areas: Earth and Space, Geometry, Measurement

A screenshot of a bicycle navigation with Gosmore, an open source routing software.
Students go on a GPS scavenger hunt
copyright
Copyright © Erik Streb. Wikimedia Commons http://commons.wikimedia.org/wiki/File:Gosmore_in_berlin_with_winCE_on_transonic_6000.jpg

Summary

Students go on a GPS scavenger hunt. They use GPS receivers to find designated waypoints and report back on what they found. They compute distances between waypoints based on the latitude and longitude, and compare with the distance the receiver finds.

Engineering Connection

GPS has applications on land, at sea and in the air. Engineer-designed GPS navigation systems are used at sea by recreational boaters, commercial fisherman, cruise lines and shippers. In land-based vehicles, GPS systems show the vehicle's position on a street map so drivers can keep track of where they are, suggest the best route to reach a certain location, and aid in obtaining emergency roadside assistance by transmitting the vehicle's current position to a dispatch center. In the skies, GPS is used by all types of aircraft.

Learning Objectives

After this activity, students should be able to:

  • Use numbers to count, measure, label, and indicate distances on a GPS receiver,
  • Measure and calculate values from acquired data,
  • Understand the connections between GPS technology and navigation, aircraft, and many forms of transportation

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

  • Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (Grade 6) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Information and communication systems allow information to be transferred from human to human, human to machine, and machine to human. (Grades 6 - 8) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Solve real-world and mathematical problems involving the four operations with rational numbers. (Grade 7) More Details

    View aligned curriculum

    Do you agree with this alignment?

  • Describe methods and equipment used to explore the solar system and beyond (Grade 8) More Details

    View aligned curriculum

    Do you agree with this alignment?

Suggest an alignment not listed above

Worksheets and Attachments

Visit [www.teachengineering.org/lessons/view/cub_navigation_lesson09_activity3] to print or download.

More Curriculum Like This

GPS on the Move

During a scavenger hunt and an art project, students learn how to use a handheld GPS receiver for personal navigation.

preview of 'GPS on the Move' Lesson
Middle School Lesson
GIS, Mathematics and Engineering Integration

Students explore using a GPS device and basic GIS skills. They gain an understanding of the concepts of latitude and longitude, the geocaching phenomenon, and how location and direction features work while sending and receiving data to a GIS such as Google Earth.

Where Is Here?

In this lesson, students are shown the very basics of navigation. The concepts of relative and absolute location, latitude, longitude and cardinal directions are discussed, as well as the use and principles of a map and compass.

preview of 'Where Is Here?' Lesson
Middle School Lesson
Navigating at the Speed of Satellites

In this lesson, students investigate the fundamental concepts of GPS technology — trilateration and using the speed of light to calculate distances.

Introduction/Motivation

GPS receivers are becoming standard equipment for outdoor enthusiasts of all ages. It is not uncommon to find GPS in watches or in cars. They can be used for very serious purposes and also simply for fun. Did you ever go on a scavenger hunt when you were younger? In a group, you might have been instructed to search for items on a list. You frantically hurried from house to house in your neighborhood searching for those items, hoping you beat other groups in the hunt. The group that got back to the starting house first with all of the items was crowned the official scavenger hunt winner. At that time, you likely had no idea that in a few short years, technology would be developed by engineers that would allow you to use latitude and longitude for a scavenger hunt. Did you ever dream that you could be told that you would find objects at each point of an M if you followed the drawing of an M with a GPS receiver? It is possible. In this activity, you will have you own GPS scavenger hunt and try to find pre-specified locations using a GPS receiver.

Assessment

Pre-Activity Assessment

Brainstorming: In small groups, have the students engage in open discussion. Remind students that no idea or suggestion is "silly." All ideas should be respectfully heard. Ask the students:

  • How is GPS used? (Possible answers: finding way when lost, navigation systems in a car, writing name in a field, creating corn mazes, for search and rescue, for ships at sea, etc.)

Activity Embedded Assessment

Worksheet: Have students complete the Explorers Worksheet.

Post-Activity Assessment

Pairs Check: After students finish working individually on worksheets, have them compare answers with a peer, giving all students time to finish the worksheet. Discuss as a class.

Lesson Extension Activities

Another activity option for groups who want more outdoor experience is to do a "geocaching" exercise. To geocache: have groups hide small objects and provide only the latitude and longitude of the object. The task is to find the cache, enter your name in a logbook, and, in some cases, replace the object. Some caches are just signs that you are supposed to find. There are a number of websites listed in the References section where you can enter your location to receive a list of nearby caches. Be careful that you use the same coordinates.

References

This is an excellent website that has lists of caches you can search by location, information on geocaching, and recommendations on GPS receivers. http://www.geocaching.com/

Link for a free software package for automating the upload of waypoints to your receiver. http://www.easygps.com/

Copyright

© 2004 by Regents of the University of Colorado.

Contributors

Matt Lundberg; Penny Axelrad; Janet Yowell; Malinda Schaefer Zarske

Supporting Program

Integrated Teaching and Learning Program, College of Engineering, University of Colorado Boulder

Acknowledgements

The contents of this digital library curriculum were developed under a grant from the Satellite Division of the Institute of Navigation (www.ion.org) and National Science Foundation GK-12 grant no. 0338326. 

Last modified: April 7, 2019

Comments

Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org